1 / 113

Physics II Today’s Agenda

Physics II Today’s Agenda. Work & Energy. Discussion. Definition. Scalar Product. Work of a constant force. Work kinetic-energy theorem. Work of a sum of constant forces. Work for a sum of displacements with constant force. Comments.

lobo
Download Presentation

Physics II Today’s Agenda

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Physics IIToday’s Agenda • Work & Energy. • Discussion. • Definition. • Scalar Product. • Work of a constant force. • Work kinetic-energy theorem. • Work of a sum of constant forces. • Work for a sum of displacements with constant force. • Comments. • Look at textbook problems Chp7 -7,11,12,17,20,23,24,27,29,36

  2. See text: 1-1 and 7-1 Work & Energy • One of the most important concepts in physics. • Alternative approach to mechanics. • Many applications beyond mechanics. • Thermodynamics (movement of heat). • Quantum mechanics... • Very useful tools. • You will learn new (sometimes much easier) ways to solve problems.

  3. See text: 1-1 and 7-1 Forms of Energy • Kinetic: Energy of motion. • A car on the highway has kinetic energy. • We have to remove this energy to stop it. • The breaks of a car get HOT! • This is an example of turning one form of energy into another. (More about this soon)...

  4. See text: 1-1 and 7-1 Forms of Energy • Potential: Stored, “potentially” ready to use. • Gravitational. • Hydro-electric dams etc... • Electromagnetic • Atomic (springs, chemical...) • Nuclear • Sun, power stations, bombs...

  5. e+ e- + 5,000,000,000 V - 5,000,000,000 V Mass = Energy (but not in Physics II) • Particle Physics: E = 1010 eV (a) (b) E = MC2 M ( poof ! ) (c)

  6. See text: 7-1 Energy Conservation • Energy cannot be destroyed or created. • Just changed from one form to another. • We say energy is conserved ! • True for any isolated system. • i.e when we put on the brakes, the kinetic energy of the car is turned into heat using friction in the brakes. The total energy of the “car-breaks-road-atmosphere” system is the same. • The energy of the car “alone” is not conserved... • It is reduced by the braking. • Doing “work” on a system will change it’s “energy”...

  7. See text: 7-1 and 7-2 Definition of Work: Ingredients: Force (F), displacement (S) Work, W, of a constant force F acting through a displacement S is: W = F.S = FScos(q) = FSS F S q FS displacement “Dot Product”

  8. a ba q b ab See text: 7-2 Aside: Scalar Product ( or Dot Product) Definition: a.b = abcos(q) = a[bcos(q)] = aba = b[acos(q)] = bab Some properties: a.b =b.a q(a.b) = (qb).a = b.(qa)(q is a scalar) a.(b + c) = (a.b)+ (a.c)(c is a vector) The dot product of perpendicular vectors is 0 !!

  9. See text: 7-2 Aside: Examples of dot products i .i = j .j = k .k = 1 i .j = j .k = k .i = 0 Then Suppose a.b = 1x4 + 2x(-5) + 3x6 = 12 a.a = 1x1 + 2x2 + 3x3 = 14 b.b = 4x4 + (-5)x(-5) + 6x6 = 77 a = 1 i + 2 j + 3 k b = 4 i - 5 j + 6 k

  10. a ay ax j i See text: 3-5 and 7-2 Aside: Properties of dot products • Magnitude: a2 = |a|2 = a .a =(axi + ay j ) .(axi + ayj ) = ax2( i .i ) + ay2( j .j ) + 2axay( i .j ) = ax2 + ay2 • Pythagoras Theorem !!

  11. See text: 7-2 Aside: Properties of dot products • Components: a = ax i + ay j + az k = (ax , ay , az ) = (a. i , a. j , a. k ) • Derivatives: • Apply to velocity • So if v is constant (like for UCM): since a and v are perpendicular

  12. See text: 7-2 Back to the definition of Work: Work, W, of a force F acting through a displacement S is: W = F.S F S

  13. See text: 7-1 and 7-2 Work: 1-D Example (constant force) • A force F= 10Npushes a box across a frictionless floor for a distance Dx = 5m. F Dx Work done byF on box : WF=F.Dx=FDx (since F is parallel to Dx) WF = (50 N)x(5m) = 50 N-m. See example 7.1

  14. mks cgs other BTU = 1054 J calorie = 4.184 J foot-lb = 1.356 J eV = 1.6x10-19 J Dyne-cm (erg) = 10-7 J N-m (Joule) See text: 7-1 Units: Force x Distance = Work Newton x [M][L] / [T]2 Meter = Joule [L] [M][L]2 / [T]2

  15. v1 v2 F Dx See text: 7-1 and 7-2 Work & Kinetic Energy: • A force F= 10Npushes a box across a frictionlessfloor for a distance Dx = 5m. The speed of the box is v1 before the push, and v2 after the push. m i

  16. v1 v2 F Dx See text: 7-1, 7-2, 7-5 Work & Kinetic Energy... • Since the force F is constant, acceleration a will be constant. We have shown that for constant a: • v22 - v12 = 2a(x2-x1 ) = 2aDx. • multiply by 1/2m: 1/2mv22 - 1/2mv12 = maDx • But F = ma1/2mv22 - 1/2mv12 = FDx m a i

  17. v1 v2 F Dx Work & Kinetic Energy... • So we find that • 1/2mv22 - 1/2mv12 = FDx = WF • Define Kinetic Energy K: K = 1/2mv2 • K2 - K1 = WF • WF = DK (Work kinetic-energy theorem) m a i

  18. Fnet K2 K1 dS See text: 7-3, 7-4, 7-5 Work Kinetic-Energy Theorem: {NetWork done on object} = {change in kinetic energy of object} • This is true in general:

  19. F(x) x1 x2 dx See text: 7-3 Work done by Variable Force: (1D) • When the force was constant, we wrote W = FDx • area under F vs x plot: • For variable force, we find the areaby integrating: • dW = F(x) dx. F Wg x Dx

  20. See text: 7-3, 7-4, 7-5 A simple application:Work done by gravity on a falling object • What is the speed of an object after falling a distance H, assuming it starts at rest ? • Wg = F.S = mgScos(0) = mgH Wg = mgH Work Kinetic-Energy Theorem: Wg = mgH= 1/2mv2 v0 = 0 mg j S H v

  21. See text: 7-3, 7-4, 7-5 What about a sum of forces? Suppose FTOT = F1 + F2 and the displacement is S. The work done by each force is: W1 = F1.S W2 = F2.S WTOT= W1 + W2 = F1.S + F2.S = (F1+ F2).S WTOT= FTOT .SIt’s the total force that mattters !! FTOT F1 S F2

  22. See text: 7-3, 7-4, 7-5 Work by sum of displacementswith constant force. W = W1 + W2 = F.S1 + F.S2 = F.( S1 + S2 ) W= F.S Work depends onlyon total displacement, not on the “path”. S2 S S1 F

  23. See text: 7-3, 7-4, 7-5 Work by sum of displacementswith constant force. W = W1 + W2 +. . .+ Wn = F.S1 + F.S2 + . . . + F.Sn = F.( S1 + S2 + . . .+ Sn ) W= F.S Same result as simple case. Sn S S3 S2 S1 F

  24. See text: 7-3, 7-4, 7-5 Comments: • Time interval not relevant. • Run up the stairs quickly or slowly...same W. Since W = F.S • No work is done if: • F = 0 or • S = 0 or • q= 90o

  25. See text: 7-3, 7-4, 7-5 Comments... W = F.S • No work done if q= 90o. • No work done by T. • No work done by N. T v v N

  26. Recap of today’s lecture • Work & Energy. • Discussion. • Definition. • Scalar Product. • Work of a constant force. • Work kinetic-energy theorem. • Properties (units, time independence etc). • Work of a combination of forces. • Comments. • Look at textbook problems Serway Chp7 -7,11,12,17,20,23,24,27,29,36

  27. Physics II: Lecture Todays Agenda • Review of Work. Last lecture • Work done by gravity near the earths surface. • Examples: • pendulum, inclined plane, free-fall. • Work done by variable force. • Spring • Problem involving spring & friction- Serway 7- 37,39,40,46,51

  28. v1 v2 F Dx See text: 7-3, 7-4, 7-5 Work Kinetic-Energy Theorem: • {NetWork done on object} • = • {change in kinetic energy of object} • WF = DK = 1/2mv22 - 1/2mv12 WF = FDx m

  29. See text: 7-1 Work done by gravity: • Wg = F.S1= mgS1cos(q1) = -mgS1cos(f1) = -mgDy Wg = -mgDy Depends only on Dy ! S1 Dy j f1 q1 m mg

  30. See text: 7-1 Work done by gravity... • Wg = S(F.s)= F.STOT Wg = -mgDy Depends only on Dy ! Dy j m mg See example 7-2 (easy) and example 7-9 (harder)

  31. See text: 7-1 Example: Falling Objects v=0 v=0 v=0 H vf vf vf Free Fall Frictionless inclinePendulum

  32. N mg See text: 7-1 and 7-2 Example: Falling Objects... W = F.S = FScos(q) • No work done if q= 90o. • No work done by T. • Only mg does work ! • No work done by N. • Only mg does work ! T v mg v

  33. See text: 7-3 and 7-4 Example: Falling Objects v=0 v=0 v=0 H vf vf vf Free Fall Frictionless inclinePendulum Only gravity will do work: Wg = mgH = 1/2 mvf2 does not depend on path !!

  34. See text: 7-1 to 7-5 Lifting a book with your hand:What is the total work done on the book ?? • First calculate the work done by gravity: Wg = mg.S = -mgS • Now find the work done bythe hand: WHAND = FHAND.S = FHAND S FHAND S v = const a = 0 mg

  35. See text: 7-1 to 7-5 Example: Lifting a book... Wg = -mgS WHAND = FHAND S WTOT = WHAND + Wg = FHAND S -mgS = (FHAND -mg)S = 0 sincea = 0 • So WTOT= 0 !! FHAND S v = const a = 0 mg

  36. See text: 7-5 Example: Lifting a book... • Work Kinetic-Energy Theorem says: WF = DK {NetWork done on object}={change in kinetic energy of object} In this case, v is constant so DK = 0and so WF must be 0, as we found. FHAND S v = const a = 0 mg

  37. F(x) x1 x2 dx See text: 7-3 Work done by Variable Force: (1D) • When the force was constant, we wrote W = FDx • area under F vs x plot: • For variable force, we find the areaby integrating: • dW = F(x) dx. F Wg x Dx

  38. See text: 7-3 1-D Variable Force Example: Spring • For a spring we know that Fx = -kx. F(x) x1 x2 x equilibrium -kx F= - k x1 F= - k x2

  39. See text: 7-3 Spring... • The work done by the spring Wsduring a displacement from x1to x2 is the area under the F(x) vs x plot between x1and x2. F(x) x1 x2 x Ws equilibrium -kx

  40. See text: 7-3 Spring... • The work done by the spring Wsduring a displacement from x1to x2 is the area under the F(x) vs x plot between x1and x2. F(x) x1 x2 x Ws -kx

  41. See text: 7-3 Problem: Spring pulls on mass. • A spring (constant k) is stretched a distance d, and a mass m is hooked to its end. The mass is released (from rest). What is the speed of the mass when it returns to the equilibrium position if it slides without friction? m equilibrium position stretched position (at rest) m d after release m v back at equilibrium position m vE

  42. See text: 7-3 Problem: Spring pulls on mass. • First find the net work done on the mass during the motion from x=d to x=0 (only due to the spring): stretched position (at rest) m d equilibrium position m i ve

  43. See text: 7-3 Problem: Spring pulls on mass. • Now find the change in kinetic energy of the mass: stretched position (at rest) m d equilibrium position m i ve

  44. See text: 7-3 Problem: Spring pulls on mass. • Now use work kinetic-energy theorem: Wnet = WS = DK. stretched position (at rest) m d equilibrium position m i ve

  45. See text: 7-3 Problem: Spring pulls on mass. • Now suppose there is a coefficient of friction m between the block and the floor? • The total work done on the block is now the sum of the work done by the spring WS (same as before) and the work done by friction Wf.Wf = f.S = -mmg d S stretched position (at rest) m d equilibrium position f= mmg m i ve

  46. See text: 7-3 Problem: Spring pulls on mass. • Again use Wnet = WS + Wf = DKWf = -mmg d S stretched position (at rest) m d equilibrium position f= mmg m i ve

  47. Recap of today’s lecture • Review • Work done by gravity near the earths surface. • Examples: • pendulum, inclined plane, free-fall. • Work done by variable force. • Spring • Problems involving spring & friction. Serway 7- 37,39,40,46,51

  48. Physics II: Lecture Todays Agenda • Review. • Work done by variable force in 3-D. • Newtons gravitational force. • Conservative Forces & Potential energy. • Conservation of “Total Mechanical Energy” • Example: Pendulum. • Nonconservative force • friction • General work-energy theorem • Example problem. • Serway Chp 8- 1,2,7,9,11,12,14,20,22,25,27,32,35

  49. F dS See text: 7-4 Work by variable force in 3-D: • Work dWF of a force F acting • through an infinitesmal • displacement dS is: • dW = F.dS • The work of a big displacement through a variable force will be the integral of a set of infinitesmal displacements: • WTOT = F.dS

More Related