1 / 21

Fuel Cells

Fuel Cells. Fuel Cell - an electrochemical energy conversion device. To convert the chemicals hydrogen and oxygen into water, and in the process it produces electricity. Battery : the other electrochemical device that we are all familiar.

loan
Download Presentation

Fuel Cells

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fuel Cells

  2. Fuel Cell- an electrochemical energy conversion device • To convert the chemicals hydrogen and oxygen into water, and in the process it produces electricity. • Battery: the other electrochemical device that we are all familiar. • A battery has all of its chemicals stored inside, and it converts those chemicals into electricity too. • This means that a battery eventually "goes dead" and you either throw it away or recharge it.

  3. For a fuel cell • Chemicals constantly flow into the cell so it never goes dead. • As long as there is a flow of chemicals into the cell, • the electricity flows out of the cell. • Most fuel cells in use today use hydrogen and oxygen as the chemicals.

  4. Classification of Fuel Cells:According to temperature range

  5. Classification of Fuel Cells:According to Physical state of the fuel

  6. Types of Fuel Cells:Following fuels are mostly used in fuel cells:1) Hydrogen………2) Fossil fuel ……..3) Hydrocarbon fuel4) Alcohol fuel …….5) Hydrazine fuel…..

  7. Basic Configuration

  8. Parts of a Fuel Cell • Anode • Negative post of the fuel cell. • Conducts the electrons that are freed from the hydrogen molecules so that they can be used in an external circuit. • Etched channels disperse hydrogen gas over the surface of catalyst. • Cathode • Positive post of the fuel cell • Etched channels distribute oxygen to the surface of the catalyst. • Conducts electrons back from the external circuit to the catalyst • Recombine with the hydrogen ions and oxygen to form water. • Electrolyte • Proton exchange membrane. • Specially treated material, only conducts positively charged ions. • Membrane blocks electrons. • Catalyst • Special material that facilitates reaction of oxygen and hydrogen • Usually platinum powder very thinly coated onto carbon paper or cloth. • Rough & porous maximizes surface area exposed to hydrogen or oxygen • The platinum-coated side of the catalyst faces the PEM.

  9. Fuel Cell Operation • Pressurized hydrogen gas (H2) enters cell on anode side. • Gas is forced through catalyst by pressure. • When H2 molecule comes contacts platinum catalyst, it splits into two H+ ions and two electrons (e-). • Electrons are conducted through the anode • Make their way through the external circuit (doing useful work such as turning a motor) and return to the cathode side of the fuel cell. • On the cathode side, oxygen gas (O2) is forced through the catalyst • Forms two oxygen atoms, each with a strong negative charge. • Negative charge attracts the two H+ ions through the membrane, • Combine with an oxygen atom and two electrons from the external circuit to form a water molecule (H2O).

  10. Proton-Exchange Membrane Cell http://www.news.cornell.edu/releases/Nov03/Fuelcell.institute.deb.html

  11. PEM Fuel Cell Animation Click on Diagram

  12. Fuel Cell Stack http://www.nrel.gov/hydrogen/photos.html

  13. It consists of three components - a cathode, an anode, and an electrolyte sandwiched between the two. • Oxygen from the air flows through the cathode • A fuel gas containing hydrogen, such as methane, flows past the anode. • Negatively charged oxygen ions migrate through the electrolyte membrane react with the hydrogen to form water, • The reacts with the methane fuel to form hydrogen (H2) & carbon dioxide (CO2).

  14. This electrochemical reaction generates electrons, which flow from the anode to an external load and back to the cathode, • a final step that both completes the circuit and supplies electric power. • To increase voltage output, several fuel cells are stacked together to form the heart of a clean power generator.

  15. Hydrogen Fuel Cell Efficiency • 40% efficiency converting methanol to hydrogen in reformer • 80% of hydrogen energy content converted to electrical energy • 80% efficiency for inverter/motor • Converts electrical to mechanical energy • Overall efficiency of 24-32%

  16. Auto Power Efficiency Comparison http://www.howstuffworks.com/fuel-cell.htm/printable

  17. Advantages/Disadvantages of Fuel Cells • Advantages • Water is the only discharge (pure H2) • Disadvantages • CO2 discharged with methanol reform • Little more efficient than alternatives • Technology currently expensive • Many design issues still in progress • Hydrogen often created using “dirty” energy (e.g., coal) • Pure hydrogen is difficult to handle • Refilling stations, storage tanks, …

  18. Fuel Cells

  19. Fuel Cell Energy Exchange http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/electrol.html

  20. PEM Fuel Cell Schematic

More Related