1 / 23

Hiérarchies des modèles fluides M. Ottaviani (Ass. EURATOM-CEA, DRFC, Cadarache)

Hiérarchies des modèles fluides M. Ottaviani (Ass. EURATOM-CEA, DRFC, Cadarache). Plan de l’exposé Rappel: échelles spatiales et temporelles Développement de basse fréquence 1: des équations de Braginskii aux modèles fluides de basse fréquence

liza
Download Presentation

Hiérarchies des modèles fluides M. Ottaviani (Ass. EURATOM-CEA, DRFC, Cadarache)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hiérarchies des modèles fluidesM. Ottaviani(Ass. EURATOM-CEA, DRFC, Cadarache) Plan de l’exposé • Rappel: échelles spatiales et temporelles • Développement de basse fréquence 1: des équations de Braginskii aux modèles fluides de basse fréquence • Développement de basse fréquence 2: de l’équation girocinétique aux modèles girofluides • Exemples (issus de mes travaux, anciens ou en cours) • Conclusions

  2. Space and time scales in magnetic confinement

  3. Low frequency dynamics: scales of interest

  4. From kinetic to fluid: classical approach • Kinetic equation (collision dominated) ==> • Chapman-Enskog expansion ==> • Braginskii equations (1960) ==> • low frequency expansions (drift ordering) ==> • models, eventually ad hoc closures

  5. From kinetic to fluid: gyrofluid approach (since 1990) • Kinetic equation, non collisional (Vlasov) ==> • low frequency expansion ==> • gyrokinetic equation ==> • moments, closures ==> • hierarchy of gyrofluid models

  6. Braginskii equations

  7. Drift expansion

  8. Generalized Ohm’s law

  9. Hasegawa Mima model (1978)

  10. Hasegawa-Wakatani model (1982)

  11. Four field model, Hazeltine et al (1985)

  12. Problems

  13. Gyrofluid approach

  14. Moments of the GKE (m+n models), Dorland (1992)

  15. The issue of GF closures

  16. Further developments

  17. The 3+1 model from Beer (1994)

  18. Hasegawa-Mima, revisited

  19. Example 1. Collisionless reconnection: sawtooth crash Result (Ottaviani & Porcelli, 1993) Current sheet formation on a fast timescale, controlled by el. inertia.

  20. Example 2. Tearing-modes at low collisionality • Analysis of tearing modes (reconnecting modes) in regimes of low collisionality. The drift frequency exceeds the collision frequency. Electron inertia comes into play • Employs the four-field model • Study linear stability criteria. • Search for bistability (coexistence of states). • Coupling to drift waves Electrostatic solution, small island de-localized electric potential, drift-wave Electromagnetic solution, island localized electric potential

  21. Example 3. Ion temperature gradient turbulence • General goal: determine the dependence of turbulent thermal transport as a function of dimensionless parameters (Manfredi & Ottaviani, 1997, and foll.) • ITG model:

  22. Conclusions (personal) • Conventional low frequency fluid models still useful, at least for a first approach to a given problem • Gyrofluid models more flexibles, take naturally into account the anisotropy • Good practical closures for the parallel dynamics exist, if sufficiently high order momenta are kept, especially when magnetic fluctiations are present • FLR closures still involved, complicated. Problematic at very short wavelengths (below the ion Larmor radius) • More work ?

More Related