1 / 63

室內分區與定位技術之吸塵器機器人 Design of Indoor Localization and Map Decomposition for Vacuuming Robot s

室內分區與定位技術之吸塵器機器人 Design of Indoor Localization and Map Decomposition for Vacuuming Robot s. 元智大學 資工系 黃士殷 2008 0512. Outline. Motivation Related work System architecture Ultrasound localization Wiimote localization Map decomposition Robot’s motion. Motivation.

livia
Download Presentation

室內分區與定位技術之吸塵器機器人 Design of Indoor Localization and Map Decomposition for Vacuuming Robot s

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 室內分區與定位技術之吸塵器機器人Design of Indoor Localization and Map Decomposition for Vacuuming Robots 元智大學 資工系 黃士殷 2008 0512

  2. Outline • Motivation • Related work • System architecture • Ultrasound localization • Wiimote localization • Map decomposition • Robot’s motion

  3. Motivation • Robot applications become popular in daily life • Drawbacks of original Roomba • Nopath planning: clean the room inefficiently • Indoor Localization

  4. Related Work – Vacuuming Robots • Vacuuming robots • iRobot (US): Roomba • Yujin Robotics (Korea): iClebo • Electrolux (Sweden): Trilobite • HITACHI (Japan): Home cleaner robot • LG (Korea): VR4000 • 臺灣松騰: TRV-100 趴趴走吸塵器機器人 • Krcher (Germany): RC3000 • Samsung (Korea): VC-RE70V

  5. Vacuuming Robot - 1 • iRobot - Roomba • Price: US$ 280~330 • Virtual wall: limit the cleaning area • Virtual light house • Assign robot to clean the specific room • Auto recharge • Charge 3 hr for 120 minutes use • Remote control • Bumper sensor for dodging • Floor detection

  6. Vacuuming Robot - 2 • Yujin Robotics - iClebo • Price: US$ 400 • Floor detection • Auto recharge • Bumper detect sensor • Pre-set the cleaning schedule • Embedded 7 infrared sensors to detect furniture

  7. Vacuuming Robot - 3 • Electrolux - Trilobite • Price: US$ 1,600 • Ultrasound sensor to detect obstacle • Auto recharge • Pre-setting the cleaning time • Magnet strip • To limit cleaning range

  8. Vacuuming Robot - 4 • HITACHI - Home cleaner robot • Auto recharge • Charge 2 hr for 50 minutes use • Unique cleaning path • Remote control • Install camera inside • Equip with ultrasound

  9. Vacuuming Robot - 5 • LG - VR4000 • Price: US$ 2,500 • Powerful suction system • RF wireless remote control • Equip with variety sensors • Voice informer • Four moving path • Gyro matrix • Spiral • Variable matrix • Random

  10. Vacuuming Robot - 6 • 臺灣松騰實業 - TRV-100 趴趴走吸塵器機器人 • Price: US$ 275 • Auto recharge • IR remote control • Pre-set the schedule time • Floor detection • Embedded fuzzy program • Help to explore in the room

  11. Vacuuming Robot - 7 • Krcher - RC3000 • Price: US$ 1,500 • Walk across the wired line • Air bumper to avoid obstacles • Auto recharge

  12. Vacuuming Robot - 8 • Samsung - VC-RE70V • Price: US$ 2,800 • Embedded camera inside • Generate the map automatically • Play the music • Remote control • Auto recharge • Have 15 sensors to avoid obstacles

  13. Related Work - Localization • Indoor localization • Wireless • Zigbee • IR • RFID • Ultrasound

  14. Indoor Localization - 1 • WiFi • AOA (Angle of Arrival) • TOA (Time of Arrival) • TDOA (Time Difference of Arrival) • RSS (Received Signal Strength) • Detect strength of signal to identify real position • At least 3 base stations • Distance error is about 1m

  15. Indoor Localization - 2 • Zigbee (IEEE 802.15.4) • Low power, low cost, and low data rate • Transfer range is about 10 ~ 75m • High reliability • One base can support 64,000 nodes • Distance error is about 1 ~ 2m • Most use in medical care • Hospital

  16. Indoor Localization - 3 • Infrared (IR) • IR transmitter as a beacon • Moving object equip with an IR receiver • IR was blocked by obstacles easily

  17. Indoor Localization - 4 • RFID (Radio Frequency Identification) • Create the radio index map • RFID receivers detect the object’s tag • Compare the signal strength with index database • Same as RSS localization

  18. Indoor Localization - 5 • Ultrasound • Reflection and refraction features • TDOA between transmitter and receiver • Triangular localization • Distance error is about 10cm • Not suitable for long range • Ultrasound may be affected in the mist air

  19. Related Work – Map System • Map decomposition • Coverage path planning • Boustrophedon motion • Spiral motion • Exact cellular decomposing • Rectilinear decomposing

  20. System Architecture

  21. System Architecture • Hardware requirements • Roomba Discovery • VIPER embedded board • Digital compass • Gyroscope • Replacement for digital compass • Ultrasound module • Wiimote controller • Bluetooth module • IR module

  22. Gyroscope – IDG300 • Features • Integrated X- and Y-axis gyro on a single chip • Factory trimmed full scale range of ±500°/sec • Integrated low-pass filters • Superior vibration rejection over a widefrequency range • 3V single supply operation • 5000 g shock tolerance • 6 x 6 x 1.5mm QFN package

  23. Roomba Robot

  24. Software requirements • Software requirements • Viper arm-linux-gcc • Version 3.4.x • Parallax BASIC Stamp Editor v2.1 • Burn to BASIC Stamp2 • Bluetooth • Hidp • Bluez • API • Roomba API • Libwiimote-0.4 ( arm architecture support )

  25. The Reason for Using Ultrasound • Using indoor triangle localization • Advantage • More accurate • The position error is about 10 cm • Drawbacks • Not for long range • May be affected in the foggy or mist environment

  26. Calculate the Distance by Ultrasound • Using time difference of arrival (TDOA) • Calculate the distance • T1: Ultrasound module generates RF • △: RF transmitting time • Approximate velocity of light • T2: The transmitting time between ultrasound and robot • T2 = T – T1 – △ (△ can be ignored.) • C ≒ 331.5 + 0.61 * θ (m/s)θ: temperature • Distance = C * T2 * 0.000001 (m)

  27. Ultrasound Localization

  28. Ultrasound Localization X: Space length Y: Space width Triangle localization formula

  29. Using Wiimote in Localization • To improve the ultrasound localization • Ultrasound has error about 10cm • Hard to maintain the complex module • Have dead spaces around the corner • Features in the Wiimote • Bluetooth communication • Having camera inside • Wiimote can trace upto 4 IR sources by its camera

  30. Using Wiimote in Localization • Implement the Wiimote localization • Finding the camera’s covering range • A proper Wiimote placement is the key to better tracking • The Wiimote camera has a 45 degree field of view • Designing a powerful IR transmitter • Pixel mapping problem • How to convert the warped pixel from its original watching

  31. Pixel Mapping (0, 0) (192, 632) (953, 732) convert Normal Warped pixel (1024, 768) (150, 33) (933, 13)

  32. Wiimote Indoor localization 180 cm 2 m 1.6 m The robot is equipped with powerful IR transmitter. • The sloping placement for Wiimote camera

  33. Testing Range (0, 0) 160 cm (20, 16) 160 cm 130 cm (183, 145) 205 cm (205, 160) 45

  34. Wiimote Localization • Advantages • Convenient to use • Low cost • Tracing the IR sources accurately • Error is less than 2 cm • Drawbacks • The IR sources may be blocked easily by obstacles • Wiimote only supports up to 4 IR sources • Must find a good placement for Wiimote camera catching

  35. Rectilinear Map The map is composed by many cells.

  36. Rectilinear Map Representation

  37. Map Decomposition Map is decomposed by obstacle’s critical edge

  38. Map Decomposition(Cont.) Map will be merged with each other.

  39. Boustrophedon Algorithm • Boustrophedon was first used in the English language in 1699. • It means that “The way of the ox.” • Robot act in back and forth motion • Advantages • Cleaning the cell efficiently • No path overlapping

  40. Boustrophedon Algorithm(Cont.) The Robot’s action is similar to cow’s seed-sowing motion.

  41. Path Planning The robot is inside the cell. The robot is outside the cell.

  42. Path Planning(Cont.) The robot comes across the obstacle

  43. Ultrasound • Advantages • More accurate than some other indoor localization • The position error is about 10 cm • Drawbacks • Unstable • Not suitable for long range • limited within150 * 150 cm • May be affected in the foggy or mist environment • The ultrasound module is hard to maintain

  44. Digital Compass • Digital Compass • Advantage • Can correct the moving direction • Drawback • Can be affected easily in magnetic environment • Correcting direction continuously will decrease whole efficiency

  45. Wiimote Gesture Recognition

  46. 相關研究 • 陀螺儀 • 慣性動作感測 • Mx Air ( 羅技空中滑鼠 ) • 加速度感測晶片 • 加速度方向感測 • Wiimote • Wiimote相關 • 控制方面 • 應用方面 • Fuzzy theory

  47. 研究目的 • Wiimote控制轉換介面 • Wiimote手勢辨識( 三軸方向加速度訊號分析 ) • 提高辨識率 • 機械手臂控制 • 模擬人手臂 • 即時控制 • 載具 • Roomba

  48. Wiimote控制轉換介面

  49. 整體架構 機械手臂(模擬人手臂) 單晶片(控制機械手臂) RS232 RS232 Bluetooth 降壓電路 載具(搭載嵌入板及機械手臂)

  50. Wiimote簡介 • 移動感測 • 加速度感測晶片 • 紅外線camera • 無線傳輸 • 藍芽傳輸 • 有效距離:10公尺 • 12個按鈕 • 四個方向鍵、A、B、+、-、home、1、2和power

More Related