The Tully-Fisher Relation: Across Morphological Types and Redshift
Download
1 / 49

The Tully-Fisher Relation: Across Morphological Types and Redshift - PowerPoint PPT Presentation


  • 116 Views
  • Uploaded on

The Tully-Fisher Relation: Across Morphological Types and Redshift. Martin Bureau , Oxford University. Stellar: Michael Williams, Michele Cappellari CO: Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas 3D Team NANTEN2: Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' The Tully-Fisher Relation: Across Morphological Types and Redshift' - lis


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

The Tully-Fisher Relation: Across Morphological Types and Redshift

Martin Bureau, Oxford University

Stellar:Michael Williams, Michele Cappellari

CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D Team

NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

NANTEN2 consortium

KMOS:Sarah Miller, Mark Sullivan, Roger Davies,

UK KMOS consortium

Plans:Galaxy formation, scaling relations, T-F relation

Stellar T-F: data, modeling, Vc , S0-S evolution

CO T-F: data, Vc biases, prospects

High-z: local benchmarks, ALMA, VLT/KMOS

Summary


The Tully-Fisher Relation: Across Morphological Types and Redshift

Martin Bureau, Oxford University

Stellar:Michael Williams, Michele Cappellari

CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D Team

NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

NANTEN2 consortium

KMOS:Sarah Miller, Mark Sullivan, Roger Davies,

UK KMOS consortium

Plans:Galaxy formation, scaling relations, T-F relation

Stellar T-F: data, modeling, Vc , S0-S evolution

CO T-F: data, Vc biases, prospects

High-z: local benchmarks, ALMA, VLT/KMOS

Summary


Hubble Sequence Redshift

(spheroid)

SAa

SAb

SAc

SAd

Mass, velocity dispersion,

L-weighted age, density

Irr

S0

(Astronomy 01)

E3

E1

E7

Gas fraction, rotation, SF

SBc

(disk)

SBa

SBb

SBd


Broad Aims Redshift

Goals:

  • Mass assembly history

    (gas, stars, dark matter)

  • Chemical enrichment history

    (age, metallicity, SFH)

    Context:

  • Hierarchical structure formation

    (merging, harassment, ...)

  • Internal dynamical evolution

    (BH/triaxiality-driven, ...)

    ⇒ Exploit "fossil record"

    (near-field cosmology)

(HST HDF)

(SINS)


Scaling Relations Redshift(correlations)

Stellar Evolution:

  • Colour - mag. diagram (CMD)

  • UVX - Mg relation

    Galaxy Evolution:

  • Colour - mag. diagram (CMD)

  • Fundamental plane (FP)

    Star Formation:

  • Far infrared - radio correlation

  • Kennicutt - Schmidt law (K-S)

    Underlying Physics:

  • M/L - velocity dispersion

  • Dark - visible matter

(Micela et al. 88)

(Blanton et al. 06)

(Combes et al. 07)


Tully-Fisher: RedshiftDefinition

Definition:

  • Originally, optical luminosity (magnitude) vs. HI linewidth

  • (corrected for disk inclination)

  • Generally, any luminosity

  • (stellar mass) vs. any rotational velocity (total mass)

  • ⇒ Luminous vs. dark matter

    Uses:

  • Distance determination

  • (H0, peculiar velocity field, …)

  • ⇒ M/L evolution with z (and type)

  • (zero-point and scatter)

Lum.

(Bureau et al. 96)

V/sin i


Tully-Fisher: RedshiftM/L evolution

Scaling:

  • We have:

  • G M / R2 = V2 / R

  • M α V2 R

  • We define:

  • M/L

  • Σ = M / πR2

  • We get:

  • L = V4 / πG2 (M/L) Σ

  • L α V4(M/L)-1 Σ-1

M/L:

  • Stellar populations

  • - Age

  • - Metallicity

  • - Non-Solar abundance ratio

  • - Star formation history (SFH)

  • - Initial mass function (IMF)

  • - …

  • Dark matter

  • Size scale

  • (Gas-rich) disk galaxies


Tully-Fisher: RedshiftTracers


Stellar + CO T-F: RedshiftGoals

Goals:

  • M/L evolution

  • Constraints on galaxy formation through zero-point and scatter

  • Probe E-S0-S interface

  • (stellar pops, DM, structure)

  • Constrain E-S0-S evolution

  • Identical treatment of E/S0/S

  • (avoid systematic biases)

E - S0 - S continuity:


The Tully-Fisher Relation: Across Morphological Types and Redshift

Martin Bureau, Oxford University

Stellar:Michael Williams, Michele Cappellari

CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D Team

NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

NANTEN2 consortium

KMOS:Sarah Miller, Mark Sullivan, Roger Davies,

UK KMOS consortium

Plans:Galaxy formation, scaling relations, T-F relation

Stellar T-F: data, modeling, Vc, S0-S evolution

CO T-F: data, Vc biases, prospects

High-z: local benchmarks, ALMA, VLT/KMOS

Summary


Stellar T-F: RedshiftSample, data

  • Sample:

  • 28 edge-on disk galaxies:

  • 14 S0, 14 Sa-Sc

  • Mostly bright, HSB, field objects

  • (Bureau & Freeman 1999)

  • K-band images

  • (Bureau et al. 06)

  • Stellar kinematics (2-3 Re)

  • (Chung et al. 04)

  • ⇒ Inclination known, need to derive (corrected) rotation velocity

Stellar kinematics:(V, σ, h3, h4)

(Chung et al. 04)

v

σ

h3

h4

vrms = √(v2 + σ2)


Stellar T-F: RedshiftModeling method

Luminous MGE model:

  • Multi-Gaussian expansion of image (incl. negative terms)

  • ⇒ Radially constant M/L* free

  • Dark NFW halo:

  • Assumed mass-concentration relation

  • ⇒ Dark halo virial mass MDM free

  • JAM dynamical model:

  • Jeans axisymmetric modeling

  • ⇒ Radially constant orbital anisotropy βz free

JAM:

MDM

M/L*

(Williams et al. 09)

* Rotation dominant (esp. in outer parts),

so anisotropy effects unimportant

(mass-anisotropy degeneracy minimised)


Stellar T-F: RedshiftVelocity measure

  • Velocities:

  • Need single measure of velocity

  • Flat (or asymptotic) velocity

  • Systematics:

  • Past works compare modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases

  • ⇒ Here, compare Vcirc with Vcirc

Velocity definition:

(Williams et al. 10)

V (km s-1)

R (arcsec)


Stellar T-F: RedshiftVelocity measure

  • Velocities:

  • Need single measure of velocity

  • Flat (or asymptotic) velocity

  • Systematics:

  • Past works compare modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases

  • ⇒ Here, compare Vcirc with Vcirc

Velocity comparisons:

Vcirc - Vdrift

S0

S

S0 (Bedregal et al. 06)

VHI - Vdrift

(Williams et al. 10)


Stellar T-F: RedshiftVelocity measure

VLA+ATCA:

  • Velocities:

  • Need single measure of velocity

  • Flat (or asymptotic) velocity

  • Systematics:

  • Past works compare modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases

  • ⇒Here, compare Vcirc with Vcirc

(Chung et al. 06, 12)


Stellar T-F: RedshiftS0 vs Sab

S0 vs Sab:

  • Large offset to Sc-Sd T-F relation for both S0 and Sab

  • S0 fainter than Sab by

  • 0.50 ± 0.15 mag at K (identical treatment)

  • (smaller than previous studies)

  • Evolution:

  • Fading timescale ≈1 Gyr,

  • but S0 up to z≈1

  • ⇒ Passive evolution(exclusively) ruled out

T-F relation:K-band

(14 S0 + 14 Sa-Sc, mostly field spirals)

(K-band; 2-3 Re stellar kinematics)

S0

S

(Williams et al. 10)


Baryonic T-F: RedshiftS0 vs Sab

Baryonic and “total” T-F:

  • S0 and Sab still slightly offset when considering stellar mass

  • (0.2 dex) (worse if gas added)

  • S0 – Sab offset unchanged for dynamical mass

  • (although Mdyn rather uncertain)

  • If S0 – Sab Mdyn offset is true, then “broken homology”

  • (S0 more compact by 20%)

  • ⇒ S0 not simply S fading…

  • dynamical “processing”

  • required

T-F relation:M* and Mdyn

M*

S0

S

Mdyn

(Williams et al. 10)


Baryonic T-F: RedshiftS0 vs Sab

Baryonic and “total” T-F:

  • S0 and Sab still slightly offset when considering stellar mass

  • (0.2 dex) (worse if gas added)

  • S0 – Sab offset unchanged for dynamical mass

  • (although Mdyn rather uncertain)

  • If S0 – Sab Mdyn offset is true, then “broken homology”

  • (S0 more compact by 20%)

  • ⇒ S0 not simply S fading…

  • dynamical “processing”

  • required

T-F relation:M* and Mdyn

M α V2 R

M α V4(M/L)-1 Σ-1


The Tully-Fisher Relation: Across Morphological Types and Redshift

Martin Bureau, Oxford University

Stellar:Michael Williams, Michele Cappellari

CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D Team

NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

NANTEN2 consortium

KMOS:Sarah Miller, Mark Sullivan, Roger Davies,

UK KMOS consortium

Plans:Galaxy formation, scaling relations, T-F relation

Stellar T-F: data, modeling, Vc , S0-S evolution

CO T-F: data, Vc biases, prospects

High-z: local benchmarks, ALMA, VLT/KMOS

Summary


CO T-F Redshift


CO T-F Redshift


Co t f caveats and pitfalls

Possible Pitfalls: Redshift

CO may not extend to flat part of rotation curve

Geometry and inclination ill-defined

CO-rich populations unrepresentative of general galaxy population (biased)

CO T-F: Caveats and pitfalls

(Young et al. 11)

(Young et al. 11)


Co t f atlas 3d survey

Sample selection: Redshift

MK < -21.5

D < 41 Mpc

|δ – 29º| < 35º , |b| > 15º

All E/S0s, no spiral structure

Data:

SAURON optical wide-field IFU

SDSS/INT optical + 2MASS NIR imaging

IRAM 30m CO (1-0)+(2-1) + CARMA CO (1-0) follow-up

WSRT HI (δ > 10º, excl. Virgo)

Various archives (XMM, Chandra, GALEX, HST, Spitzer, …)

CO T-F: Atlas3D survey

Red

Blue

Atlas3D

g-r

(Cappellari et al. 11)

Mr

⇒ 260 galaxies


CO T-F: RedshiftSingle-dish survey

IRAM 30m Survey:

  • CO(1-0,2-1), 23/12” FWHM

  • 260 Atlas3D E/SOs

  • Sensitivity: 3 mK (30 km s-1)

    3 x 107 M⊙

    Results:

  • 22% detection rate

  • MH2 = 107.1-9.3 M⊙

  • CO(2-1)/CO(1-0) ≈ 1 - 2

  • Largely independent of:

  • luminosity, dynamics (λR),

  • environment (Virgo), …

High S/N:

Low S/N:

(Combes, Young & Bureau 07; Young et al. 11)


CO T-F: RedshiftSingle-dish survey

IRAM 30m Survey:

  • CO(1-0,2-1), 23/12” FWHM

  • 260 Atlas3D E/SOs

  • Sensitivity: 3 mK (30 km s-1)

    3 x 107 M⊙

    Results:

  • 22% detection rate

  • MH2 = 107.1-9.3 M⊙

  • CO(2-1)/CO(1-0) ≈ 1 - 2

  • Largely independent of:

  • luminosity, dynamics (λR),

  • environment (Virgo), …

Optical CMD + CO:

(Young et al. 11, 13)


CO T-F: RedshiftInclination measures

Stellar:

  • Galaxy axis ratio

  • (intrinsic thickness; c/a=0.34)

  • JAM best-fit inclination

    (Molecular) Gas:

  • Unsharp-masked image

  • ellipse fitting

  • Tilted-ring model best-fit inclination

  • ⇒ Error not strongly dependent on inclination

Stellar i :

(Davis et al. 11a)

(Cappellari et al. 10)


CO T-F: RedshiftInclination measures

Atlas3D (CARMA):

  • H2 and stars often misaligned:

  • ≥1/3 external (accretion/cooling)

  • ≤2/3 internal (stellar mass loss)

  • Always aligned in clusters

  • Randomly misaligned in field

  • ⇒ Increased scatter (and bias)

  • in field ?

(Alatalo et al. 12)

H2 - stars

(Davis et al. 11b)

Misalignment angle


CO T-F: RedshiftInclination measures

Stellar:

  • Galaxy axis ratio

  • (intrinsic thickness; c/a=0.34)

  • JAM best-fit inclination

    (Molecular) Gas:

  • Unsharp-masked image

  • ellipse fitting

  • Tilted-ring model best-fit inclination

  • ⇒ Error not strongly dependent on inclination

(Molecular) gas i :

(Davis et al. 11a)

(Cappellari et al. 10)


CO T-F: RedshiftVelocity measure

Selection:

  • Double-horn profiles likely to reach Vflat

  • (imperfect diagnostic)

  • CO traces Vflat globally

  • (not Vpeak)

  • CO traces the circular velocity locally

  • ⇒ CO excellent kinematic tracer

Integrated profiles :

(Young et al. 11)


CO T-F: RedshiftVelocity measure

CO vs. Ionised Gas:

  • CO rotating faster (colder) then ionised gas

  • (and stars)

  • Nearly perfect tracer of the circular velocity

  • Better (and excellent) tracer of dynamical mass

  • : BIMA CO (1-0)

    --- : SAURON JAM model

    + : SAURON stars

    + : SAURON ionised gas

(Davis et al. 12)


CO T-F: RedshiftResults

CO Tully-Fisher:

  • Many (potential) pitfalls

  • Many better than expected

  • Many simple workarounds

  • Slope and zero-point

  • robustly recovered

  • Standard intrinsic scatter

  • ⇒ Stellar / Jeans T-F

  • easily recovered

  • ⇒ No or minimum efforts !

  • ⇒ Great prospect to probe

  • M/L(z) with LMT+ALMA…

CO Tully-Fisher relations:

(Davis et al. 11a)


CO T-F: RedshiftResults

ETG/FR vs Sc:

  • Sc follow spirals in HI

  • ETG/FR fainter than Sc by 1.0 ± 0.1 mag at K-band

  • (identical treatment)

  • Consistent with Williams et al.’s 0.5 mag at K-band offset for Sab

  • (consistent with past work)

  • ⇒ CO T-F easily recovered across all Hubble types

  • (and environments)

CO Tully-Fisher relations:

(Chung et al., in prep)


CO T-F Redshift


CO T-F Redshift


The Tully-Fisher Relation: Across Morphological Types and Redshift

Martin Bureau, Oxford University

Stellar:Michael Williams, Michele Cappellari

CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D Team

NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

NANTEN2 consortium

KMOS:Sarah Miller, Mark Sullivan, Roger Davies,

UK KMOS consortium

Plans:Galaxy formation, scaling relations, T-F relation

Stellar T-F: data, modeling, Vc , S0-S evolution

CO T-F: data, Vc biases, prospects

High-z: local benchmarks, ALMA, VLT/KMOS

Summary


CO T-F: RedshiftLocal benchmark

Existing work:

  • Number of studies and objects limited

  • (Dickey, Lavezzi, Sofue, Tutui, …)

  • Large single dishes or interferometry

  • ⇒ Non-optimal datasets

  • ⇒ Hard to compare with future high-z work

CO Tully-Fisher relations:

(Lavezzi & Dickey 1998)

(Schoeniger & Sofue 1997)

(Dickey & Kazes 1992)


CO T-F: RedshiftLocal benchmark

NANTEN2:

  • 4m mm/sub-mm dish, Atacama

  • CO(1-0) + (2-1) receivers

  • (1 GHz ≈ 2600 km s-1 bandwidth)

  • (61 kHz ≈ 0.15 km s-1 resolution)

  • Small consortium

  • ⇒ Large beam, 170” at CO(1-0)

  • (entire galaxies)

  • ⇒ Extensive, flexible scheduling

NANTEN2:


CO T-F: RedshiftLocal benchmark

Nearby galaxy survey:

  • Pilot observations:

  • - 30+ galaxies observed

  • (≈40 min on-source;

  • single pointing)

  • - Mosaics straightforward

  • (few attempted)

  • Full survey:

  • - 250+ “full” galaxies (≈3 yrs)

  • - Preferably no CO detection,

  • (non-TF) accurate distance

  • ⇒ z = 0 benchmark

  • (star formation, gas-to-dust ratio, …)

NANTEN2:

(Yoshiike et al., in prep)


CO T-F: RedshiftLocal benchmark

Nearby galaxy survey:

  • Pilot observations:

  • - 30+ galaxies observed

  • (≈40 min on-source;

  • single pointing)

  • - Mosaics straightforward

  • (few attempted)

  • Full survey:

  • - 250+ “full” galaxies (≈3 yrs)

  • - Preferably no CO detection,

  • (non-TF) accurate distance

  • ⇒ z = 0 benchmark

  • (star formation, gas-to-dust ratio, …)

NANTEN2:

(Yoshiike et al., in prep)


CO T-F: RedshiftIntermediate z

ALMA:

  • 50 x 12m dishes to 16 km

  • 12 x 7m dishes compact array

  • 4 x 12m dishes total power

  • 10 bands, 30 - 950 GHz

  • (bands 3, 6, 7, 9: cycles 0+1)

  • (bands 4, 8, 10: in progress)

  • (bands 1, 2, 5: ???)

  • ⇒ Detect CO or CII in MW-like galaxy at z = 3 in 24 hr

  • (z = 1 in 1 hr?)

  • LMT + GBT promising

ALMA:


CO T-F: RedshiftIntermediate z

ALMA:

  • CO(1-0): Band 3: z = 0.0 – 0.4

  • Band 2: z = 0.3 – 0.7

  • Band 1: z = 1.6 – 3.7

  • CO(2-1): Band 6: z = 0.0 – 0.1

  • Band 5: z = 0.1 – 0.4

  • Band 4: z = 0.4 – 0.8

  • Band 3: z = 1.0 – 1.7

  • Band 2: z = 1.6 – 2.4

  • Band 1: z = 4.1 – 6.4

  • ⇒ Great T-F machine

  • (spatially-resolved or not)

  • ⇒ Need better understanding

  • of CO(2-1)

ALMA:

Spiral at z = 0.0, optical, CO(2-1), cont. + CO(6-5)

(ESO)

QSO at z = 4.4, CII 158 μm (unresolved)

(ESO)


CO T-F: RedshiftIntermediate z

ALMA:

  • CO(1-0): Band 3: z = 0.0 – 0.4

  • Band 2: z = 0.3 – 0.7

  • Band 1: z = 1.6 – 3.7

  • CO(2-1): Band 6: z = 0.0 – 0.1

  • Band 5: z = 0.1 – 0.4

  • Band 4: z = 0.4 – 0.8

  • Band 3: z = 1.0 – 1.7

  • Band 2: z = 1.6 – 2.4

  • Band 1: z = 4.1 – 6.4

  • ⇒ Great T-F machine

  • (spatially-resolved or not)

  • ⇒ Need better understanding

  • of CO(2-1)

CARMA:

(EGNoG survey: spirals at z = 0.3)

(Bauermeister et al. 13)


Hα T-F: RedshiftLocal benchmark

Existing work:

  • Large number of (long-)slit spectroscopic studies

  • (Mathewson et al., Courteau, …)

  • Few integral-field studies (IFU, Fabry-Perot, …)

  • Environment independent,

  • excellent “beam”

  • ⇒ Datasets available

  • ⇒ IFU groundwork incomplete

  • (simulate higher z IFU work)

Hα Tully-Fisher relations:

(C. Flynn)

(EGG, Cornell U.)


Hα T-F: RedshiftLocal benchmark

Existing work:

  • Large number of (long-)slit spectroscopic studies

  • (Mathewson et al., Courteau, …)

  • Few integral-field studies (IFU, Fabry-Perot, …)

  • Environment independent,

  • excellent “beam”

  • ⇒ Datasets available

  • ⇒ IFU groundwork incomplete

  • (simulate higher z IFU work)

Hα velocity fields:

(Chemin et al. 2005)

(Epinet et al. 2009)


Hα T-F: RedshiftIntermediate z

VLT KMOS:

KMOS:

  • 2nd generation VLT instrument

  • 24 deployable IFUs over 7.2’ FOV

  • (2.8” x 2.8”, 14 x 14 spaxels)

  • JHK bands, R ≈ 3500

  • UK: Durham, Oxford, UKATC

  • Germany: MPE, Munich Obs, ESO

  • 250 GTO nights, 120 for UK

  • ⇒ Galaxy evolution from z = 1 to 10 (SFH, K-S, mergers, Mdyn, …)

(MPE)


Hα T-F: RedshiftIntermediate z

Mid-z galaxy survey:

KMOS UK GTO:

  • Large z = 0.5 - 3.0 survey

  • (Oxford, Durham?, MPE?)

  • Pilot: ≈20-30 objects per bin

  • 3 redshifts (0.8, 1.5, 2.4)

  • 2 morphological bins

  • Total: ≈1000 galaxies ?

  • CANDELS fields

  • (+ different environments)

  • ⇒ Adapt current (z = 0) tools

  • ⇒ Tully-Fisher (galaxy) evolution at intermediate redshifts

(Miller et al. 12)

(Förster Schreiber et al. 2009)


Hα T-F: RedshiftIntermediate z

Mid-z galaxy survey:

KMOS UK GTO:

  • Large z = 0.5 - 3.0 survey

  • (Oxford, Durham?, MPE?)

  • Pilot: ≈20-30 objects per bin

  • 3 redshifts (0.8, 1.5, 2.4)

  • 2 morphological bins

  • Total: ≈1000 galaxies ?

  • CANDELS fields

  • (+ different environments)

  • ⇒ Adapt current (z = 0) tools

  • ⇒ Tully-Fisher (galaxy) evolution at intermediate redshifts

(Koekemoer et al. 2011)

(Miller et al. 2011)


The Tully-Fisher Relation: Across Morphological Types and Redshift

Martin Bureau, Oxford University

Stellar:Michael Williams, Michele Cappellari

CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D Team

NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

NANTEN2 consortium

KMOS:Sarah Miller, Mark Sullivan, Roger Davies,

UK KMOS consortium

Plans:Galaxy formation, scaling relations, T-F relation

Stellar T-F: data, modeling, Vc , S0-S evolution

CO T-F: data, Vc biases, prospects

High-z: local benchmarks, ALMA, VLT/KMOS

Summary


T-F Conclusions Redshift

HI:- Trivial locally for late-type galaxies

⇒ Only exceptionally in early-types, high-density environments

⇒ Impossible to mid-z until SKA

Stars:- JAM successful; m2 good tracer of enclosed mass; Vcirc reliable

⇒ Possible for all morphological types, environments

⇒ Always time-consuming, impossible beyond local universe

CO:- Limited work locally; needs to be expanded

⇒ Possible for all morphological types, environments

⇒ Routine to intermediate z with ALMA + LMT

Hα:- Extensive work locally; needs to be expanded to IFUs

⇒ Difficult in early-types, ok for all environments

⇒ Routine to intermediate z with 2nd generation 8m telescopes


ad