The Tully-Fisher Relation: Across Morphological Types and Redshift
This presentation is the property of its rightful owner.
Sponsored Links
1 / 49

The Tully-Fisher Relation: Across Morphological Types and Redshift PowerPoint PPT Presentation


  • 88 Views
  • Uploaded on
  • Presentation posted in: General

The Tully-Fisher Relation: Across Morphological Types and Redshift. Martin Bureau , Oxford University. Stellar: Michael Williams, Michele Cappellari CO: Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas 3D Team NANTEN2: Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

Download Presentation

The Tully-Fisher Relation: Across Morphological Types and Redshift

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


The tully fisher relation across morphological types and redshift

The Tully-Fisher Relation: Across Morphological Types and Redshift

Martin Bureau, Oxford University

Stellar:Michael Williams, Michele Cappellari

CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D Team

NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

NANTEN2 consortium

KMOS:Sarah Miller, Mark Sullivan, Roger Davies,

UK KMOS consortium

Plans:Galaxy formation, scaling relations, T-F relation

Stellar T-F: data, modeling, Vc , S0-S evolution

CO T-F: data, Vc biases, prospects

High-z: local benchmarks, ALMA, VLT/KMOS

Summary


The tully fisher relation across morphological types and redshift

The Tully-Fisher Relation: Across Morphological Types and Redshift

Martin Bureau, Oxford University

Stellar:Michael Williams, Michele Cappellari

CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D Team

NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

NANTEN2 consortium

KMOS:Sarah Miller, Mark Sullivan, Roger Davies,

UK KMOS consortium

Plans:Galaxy formation, scaling relations, T-F relation

Stellar T-F: data, modeling, Vc , S0-S evolution

CO T-F: data, Vc biases, prospects

High-z: local benchmarks, ALMA, VLT/KMOS

Summary


The tully fisher relation across morphological types and redshift

Hubble Sequence

(spheroid)

SAa

SAb

SAc

SAd

Mass, velocity dispersion,

L-weighted age, density

Irr

S0

(Astronomy 01)

E3

E1

E7

Gas fraction, rotation, SF

SBc

(disk)

SBa

SBb

SBd


The tully fisher relation across morphological types and redshift

Broad Aims

Goals:

  • Mass assembly history

    (gas, stars, dark matter)

  • Chemical enrichment history

    (age, metallicity, SFH)

    Context:

  • Hierarchical structure formation

    (merging, harassment, ...)

  • Internal dynamical evolution

    (BH/triaxiality-driven, ...)

    ⇒ Exploit "fossil record"

    (near-field cosmology)

(HST HDF)

(SINS)


The tully fisher relation across morphological types and redshift

Scaling Relations (correlations)

Stellar Evolution:

  • Colour - mag. diagram (CMD)

  • UVX - Mg relation

    Galaxy Evolution:

  • Colour - mag. diagram (CMD)

  • Fundamental plane (FP)

    Star Formation:

  • Far infrared - radio correlation

  • Kennicutt - Schmidt law (K-S)

    Underlying Physics:

  • M/L - velocity dispersion

  • Dark - visible matter

(Micela et al. 88)

(Blanton et al. 06)

(Combes et al. 07)


The tully fisher relation across morphological types and redshift

Tully-Fisher: Definition

Definition:

  • Originally, optical luminosity (magnitude) vs. HI linewidth

  • (corrected for disk inclination)

  • Generally, any luminosity

  • (stellar mass) vs. any rotational velocity (total mass)

  • ⇒ Luminous vs. dark matter

    Uses:

  • Distance determination

  • (H0, peculiar velocity field, …)

  • ⇒ M/L evolution with z (and type)

  • (zero-point and scatter)

Lum.

(Bureau et al. 96)

V/sin i


The tully fisher relation across morphological types and redshift

Tully-Fisher: M/L evolution

Scaling:

  • We have:

  • G M / R2 = V2 / R

  • M α V2 R

  • We define:

  • M/L

  • Σ = M / πR2

  • We get:

  • L = V4 / πG2 (M/L) Σ

  • L α V4(M/L)-1 Σ-1

M/L:

  • Stellar populations

  • - Age

  • - Metallicity

  • - Non-Solar abundance ratio

  • - Star formation history (SFH)

  • - Initial mass function (IMF)

  • - …

  • Dark matter

  • Size scale

  • (Gas-rich) disk galaxies


The tully fisher relation across morphological types and redshift

Tully-Fisher: Tracers


The tully fisher relation across morphological types and redshift

Stellar + CO T-F: Goals

Goals:

  • M/L evolution

  • Constraints on galaxy formation through zero-point and scatter

  • Probe E-S0-S interface

  • (stellar pops, DM, structure)

  • Constrain E-S0-S evolution

  • Identical treatment of E/S0/S

  • (avoid systematic biases)

E - S0 - S continuity:


The tully fisher relation across morphological types and redshift

The Tully-Fisher Relation: Across Morphological Types and Redshift

Martin Bureau, Oxford University

Stellar:Michael Williams, Michele Cappellari

CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D Team

NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

NANTEN2 consortium

KMOS:Sarah Miller, Mark Sullivan, Roger Davies,

UK KMOS consortium

Plans:Galaxy formation, scaling relations, T-F relation

Stellar T-F: data, modeling, Vc, S0-S evolution

CO T-F: data, Vc biases, prospects

High-z: local benchmarks, ALMA, VLT/KMOS

Summary


The tully fisher relation across morphological types and redshift

Stellar T-F: Sample, data

  • Sample:

  • 28 edge-on disk galaxies:

  • 14 S0, 14 Sa-Sc

  • Mostly bright, HSB, field objects

  • (Bureau & Freeman 1999)

  • K-band images

  • (Bureau et al. 06)

  • Stellar kinematics (2-3 Re)

  • (Chung et al. 04)

  • ⇒ Inclination known, need to derive (corrected) rotation velocity

Stellar kinematics:(V, σ, h3, h4)

(Chung et al. 04)

v

σ

h3

h4

vrms = √(v2 + σ2)


The tully fisher relation across morphological types and redshift

Stellar T-F: Modeling method

Luminous MGE model:

  • Multi-Gaussian expansion of image (incl. negative terms)

  • ⇒ Radially constant M/L* free

  • Dark NFW halo:

  • Assumed mass-concentration relation

  • ⇒ Dark halo virial mass MDM free

  • JAM dynamical model:

  • Jeans axisymmetric modeling

  • ⇒ Radially constant orbital anisotropy βz free

JAM:

MDM

M/L*

(Williams et al. 09)

* Rotation dominant (esp. in outer parts),

so anisotropy effects unimportant

(mass-anisotropy degeneracy minimised)


The tully fisher relation across morphological types and redshift

Stellar T-F: Velocity measure

  • Velocities:

  • Need single measure of velocity

  • Flat (or asymptotic) velocity

  • Systematics:

  • Past works compare modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases

  • ⇒ Here, compare Vcirc with Vcirc

Velocity definition:

(Williams et al. 10)

V (km s-1)

R (arcsec)


The tully fisher relation across morphological types and redshift

Stellar T-F: Velocity measure

  • Velocities:

  • Need single measure of velocity

  • Flat (or asymptotic) velocity

  • Systematics:

  • Past works compare modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases

  • ⇒ Here, compare Vcirc with Vcirc

Velocity comparisons:

Vcirc - Vdrift

S0

S

S0 (Bedregal et al. 06)

VHI - Vdrift

(Williams et al. 10)


The tully fisher relation across morphological types and redshift

Stellar T-F: Velocity measure

VLA+ATCA:

  • Velocities:

  • Need single measure of velocity

  • Flat (or asymptotic) velocity

  • Systematics:

  • Past works compare modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases

  • ⇒Here, compare Vcirc with Vcirc

(Chung et al. 06, 12)


The tully fisher relation across morphological types and redshift

Stellar T-F: S0 vs Sab

S0 vs Sab:

  • Large offset to Sc-Sd T-F relation for both S0 and Sab

  • S0 fainter than Sab by

  • 0.50 ± 0.15 mag at K (identical treatment)

  • (smaller than previous studies)

  • Evolution:

  • Fading timescale ≈1 Gyr,

  • but S0 up to z≈1

  • ⇒ Passive evolution(exclusively) ruled out

T-F relation:K-band

(14 S0 + 14 Sa-Sc, mostly field spirals)

(K-band; 2-3 Re stellar kinematics)

S0

S

(Williams et al. 10)


The tully fisher relation across morphological types and redshift

Baryonic T-F: S0 vs Sab

Baryonic and “total” T-F:

  • S0 and Sab still slightly offset when considering stellar mass

  • (0.2 dex) (worse if gas added)

  • S0 – Sab offset unchanged for dynamical mass

  • (although Mdyn rather uncertain)

  • If S0 – Sab Mdyn offset is true, then “broken homology”

  • (S0 more compact by 20%)

  • ⇒ S0 not simply S fading…

  • dynamical “processing”

  • required

T-F relation:M* and Mdyn

M*

S0

S

Mdyn

(Williams et al. 10)


The tully fisher relation across morphological types and redshift

Baryonic T-F: S0 vs Sab

Baryonic and “total” T-F:

  • S0 and Sab still slightly offset when considering stellar mass

  • (0.2 dex) (worse if gas added)

  • S0 – Sab offset unchanged for dynamical mass

  • (although Mdyn rather uncertain)

  • If S0 – Sab Mdyn offset is true, then “broken homology”

  • (S0 more compact by 20%)

  • ⇒ S0 not simply S fading…

  • dynamical “processing”

  • required

T-F relation:M* and Mdyn

M α V2 R

M α V4(M/L)-1 Σ-1


The tully fisher relation across morphological types and redshift

The Tully-Fisher Relation: Across Morphological Types and Redshift

Martin Bureau, Oxford University

Stellar:Michael Williams, Michele Cappellari

CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D Team

NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

NANTEN2 consortium

KMOS:Sarah Miller, Mark Sullivan, Roger Davies,

UK KMOS consortium

Plans:Galaxy formation, scaling relations, T-F relation

Stellar T-F: data, modeling, Vc , S0-S evolution

CO T-F: data, Vc biases, prospects

High-z: local benchmarks, ALMA, VLT/KMOS

Summary


The tully fisher relation across morphological types and redshift

CO T-F


The tully fisher relation across morphological types and redshift

CO T-F


Co t f caveats and pitfalls

Possible Pitfalls:

CO may not extend to flat part of rotation curve

Geometry and inclination ill-defined

CO-rich populations unrepresentative of general galaxy population (biased)

CO T-F: Caveats and pitfalls

(Young et al. 11)

(Young et al. 11)


Co t f atlas 3d survey

Sample selection:

MK < -21.5

D < 41 Mpc

|δ – 29º| < 35º , |b| > 15º

All E/S0s, no spiral structure

Data:

SAURON optical wide-field IFU

SDSS/INT optical + 2MASS NIR imaging

IRAM 30m CO (1-0)+(2-1) + CARMA CO (1-0) follow-up

WSRT HI (δ > 10º, excl. Virgo)

Various archives (XMM, Chandra, GALEX, HST, Spitzer, …)

CO T-F: Atlas3D survey

Red

Blue

Atlas3D

g-r

(Cappellari et al. 11)

Mr

⇒ 260 galaxies


The tully fisher relation across morphological types and redshift

CO T-F: Single-dish survey

IRAM 30m Survey:

  • CO(1-0,2-1), 23/12” FWHM

  • 260 Atlas3D E/SOs

  • Sensitivity: 3 mK (30 km s-1)

    3 x 107 M⊙

    Results:

  • 22% detection rate

  • MH2 = 107.1-9.3 M⊙

  • CO(2-1)/CO(1-0) ≈ 1 - 2

  • Largely independent of:

  • luminosity, dynamics (λR),

  • environment (Virgo), …

High S/N:

Low S/N:

(Combes, Young & Bureau 07; Young et al. 11)


The tully fisher relation across morphological types and redshift

CO T-F: Single-dish survey

IRAM 30m Survey:

  • CO(1-0,2-1), 23/12” FWHM

  • 260 Atlas3D E/SOs

  • Sensitivity: 3 mK (30 km s-1)

    3 x 107 M⊙

    Results:

  • 22% detection rate

  • MH2 = 107.1-9.3 M⊙

  • CO(2-1)/CO(1-0) ≈ 1 - 2

  • Largely independent of:

  • luminosity, dynamics (λR),

  • environment (Virgo), …

Optical CMD + CO:

(Young et al. 11, 13)


The tully fisher relation across morphological types and redshift

CO T-F: Inclination measures

Stellar:

  • Galaxy axis ratio

  • (intrinsic thickness; c/a=0.34)

  • JAM best-fit inclination

    (Molecular) Gas:

  • Unsharp-masked image

  • ellipse fitting

  • Tilted-ring model best-fit inclination

  • ⇒ Error not strongly dependent on inclination

Stellar i :

(Davis et al. 11a)

(Cappellari et al. 10)


The tully fisher relation across morphological types and redshift

CO T-F: Inclination measures

Atlas3D (CARMA):

  • H2 and stars often misaligned:

  • ≥1/3 external (accretion/cooling)

  • ≤2/3 internal (stellar mass loss)

  • Always aligned in clusters

  • Randomly misaligned in field

  • ⇒ Increased scatter (and bias)

  • in field ?

(Alatalo et al. 12)

H2 - stars

(Davis et al. 11b)

Misalignment angle


The tully fisher relation across morphological types and redshift

CO T-F: Inclination measures

Stellar:

  • Galaxy axis ratio

  • (intrinsic thickness; c/a=0.34)

  • JAM best-fit inclination

    (Molecular) Gas:

  • Unsharp-masked image

  • ellipse fitting

  • Tilted-ring model best-fit inclination

  • ⇒ Error not strongly dependent on inclination

(Molecular) gas i :

(Davis et al. 11a)

(Cappellari et al. 10)


The tully fisher relation across morphological types and redshift

CO T-F: Velocity measure

Selection:

  • Double-horn profiles likely to reach Vflat

  • (imperfect diagnostic)

  • CO traces Vflat globally

  • (not Vpeak)

  • CO traces the circular velocity locally

  • ⇒ CO excellent kinematic tracer

Integrated profiles :

(Young et al. 11)


The tully fisher relation across morphological types and redshift

CO T-F: Velocity measure

CO vs. Ionised Gas:

  • CO rotating faster (colder) then ionised gas

  • (and stars)

  • Nearly perfect tracer of the circular velocity

  • Better (and excellent) tracer of dynamical mass

  • : BIMA CO (1-0)

    --- : SAURON JAM model

    + : SAURON stars

    + : SAURON ionised gas

(Davis et al. 12)


The tully fisher relation across morphological types and redshift

CO T-F: Results

CO Tully-Fisher:

  • Many (potential) pitfalls

  • Many better than expected

  • Many simple workarounds

  • Slope and zero-point

  • robustly recovered

  • Standard intrinsic scatter

  • ⇒ Stellar / Jeans T-F

  • easily recovered

  • ⇒ No or minimum efforts !

  • ⇒ Great prospect to probe

  • M/L(z) with LMT+ALMA…

CO Tully-Fisher relations:

(Davis et al. 11a)


The tully fisher relation across morphological types and redshift

CO T-F: Results

ETG/FR vs Sc:

  • Sc follow spirals in HI

  • ETG/FR fainter than Sc by 1.0 ± 0.1 mag at K-band

  • (identical treatment)

  • Consistent with Williams et al.’s 0.5 mag at K-band offset for Sab

  • (consistent with past work)

  • ⇒ CO T-F easily recovered across all Hubble types

  • (and environments)

CO Tully-Fisher relations:

(Chung et al., in prep)


The tully fisher relation across morphological types and redshift

CO T-F


The tully fisher relation across morphological types and redshift

CO T-F


The tully fisher relation across morphological types and redshift

The Tully-Fisher Relation: Across Morphological Types and Redshift

Martin Bureau, Oxford University

Stellar:Michael Williams, Michele Cappellari

CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D Team

NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

NANTEN2 consortium

KMOS:Sarah Miller, Mark Sullivan, Roger Davies,

UK KMOS consortium

Plans:Galaxy formation, scaling relations, T-F relation

Stellar T-F: data, modeling, Vc , S0-S evolution

CO T-F: data, Vc biases, prospects

High-z: local benchmarks, ALMA, VLT/KMOS

Summary


The tully fisher relation across morphological types and redshift

CO T-F: Local benchmark

Existing work:

  • Number of studies and objects limited

  • (Dickey, Lavezzi, Sofue, Tutui, …)

  • Large single dishes or interferometry

  • ⇒ Non-optimal datasets

  • ⇒ Hard to compare with future high-z work

CO Tully-Fisher relations:

(Lavezzi & Dickey 1998)

(Schoeniger & Sofue 1997)

(Dickey & Kazes 1992)


The tully fisher relation across morphological types and redshift

CO T-F: Local benchmark

NANTEN2:

  • 4m mm/sub-mm dish, Atacama

  • CO(1-0) + (2-1) receivers

  • (1 GHz ≈ 2600 km s-1 bandwidth)

  • (61 kHz ≈ 0.15 km s-1 resolution)

  • Small consortium

  • ⇒ Large beam, 170” at CO(1-0)

  • (entire galaxies)

  • ⇒ Extensive, flexible scheduling

NANTEN2:


The tully fisher relation across morphological types and redshift

CO T-F: Local benchmark

Nearby galaxy survey:

  • Pilot observations:

  • - 30+ galaxies observed

  • (≈40 min on-source;

  • single pointing)

  • - Mosaics straightforward

  • (few attempted)

  • Full survey:

  • - 250+ “full” galaxies (≈3 yrs)

  • - Preferably no CO detection,

  • (non-TF) accurate distance

  • ⇒ z = 0 benchmark

  • (star formation, gas-to-dust ratio, …)

NANTEN2:

(Yoshiike et al., in prep)


The tully fisher relation across morphological types and redshift

CO T-F: Local benchmark

Nearby galaxy survey:

  • Pilot observations:

  • - 30+ galaxies observed

  • (≈40 min on-source;

  • single pointing)

  • - Mosaics straightforward

  • (few attempted)

  • Full survey:

  • - 250+ “full” galaxies (≈3 yrs)

  • - Preferably no CO detection,

  • (non-TF) accurate distance

  • ⇒ z = 0 benchmark

  • (star formation, gas-to-dust ratio, …)

NANTEN2:

(Yoshiike et al., in prep)


The tully fisher relation across morphological types and redshift

CO T-F: Intermediate z

ALMA:

  • 50 x 12m dishes to 16 km

  • 12 x 7m dishes compact array

  • 4 x 12m dishes total power

  • 10 bands, 30 - 950 GHz

  • (bands 3, 6, 7, 9: cycles 0+1)

  • (bands 4, 8, 10: in progress)

  • (bands 1, 2, 5: ???)

  • ⇒ Detect CO or CII in MW-like galaxy at z = 3 in 24 hr

  • (z = 1 in 1 hr?)

  • LMT + GBT promising

ALMA:


The tully fisher relation across morphological types and redshift

CO T-F: Intermediate z

ALMA:

  • CO(1-0): Band 3: z = 0.0 – 0.4

  • Band 2: z = 0.3 – 0.7

  • Band 1: z = 1.6 – 3.7

  • CO(2-1): Band 6: z = 0.0 – 0.1

  • Band 5: z = 0.1 – 0.4

  • Band 4: z = 0.4 – 0.8

  • Band 3: z = 1.0 – 1.7

  • Band 2: z = 1.6 – 2.4

  • Band 1: z = 4.1 – 6.4

  • ⇒ Great T-F machine

  • (spatially-resolved or not)

  • ⇒ Need better understanding

  • of CO(2-1)

ALMA:

Spiral at z = 0.0, optical, CO(2-1), cont. + CO(6-5)

(ESO)

QSO at z = 4.4, CII 158 μm (unresolved)

(ESO)


The tully fisher relation across morphological types and redshift

CO T-F: Intermediate z

ALMA:

  • CO(1-0): Band 3: z = 0.0 – 0.4

  • Band 2: z = 0.3 – 0.7

  • Band 1: z = 1.6 – 3.7

  • CO(2-1): Band 6: z = 0.0 – 0.1

  • Band 5: z = 0.1 – 0.4

  • Band 4: z = 0.4 – 0.8

  • Band 3: z = 1.0 – 1.7

  • Band 2: z = 1.6 – 2.4

  • Band 1: z = 4.1 – 6.4

  • ⇒ Great T-F machine

  • (spatially-resolved or not)

  • ⇒ Need better understanding

  • of CO(2-1)

CARMA:

(EGNoG survey: spirals at z = 0.3)

(Bauermeister et al. 13)


The tully fisher relation across morphological types and redshift

Hα T-F: Local benchmark

Existing work:

  • Large number of (long-)slit spectroscopic studies

  • (Mathewson et al., Courteau, …)

  • Few integral-field studies (IFU, Fabry-Perot, …)

  • Environment independent,

  • excellent “beam”

  • ⇒ Datasets available

  • ⇒ IFU groundwork incomplete

  • (simulate higher z IFU work)

Hα Tully-Fisher relations:

(C. Flynn)

(EGG, Cornell U.)


The tully fisher relation across morphological types and redshift

Hα T-F: Local benchmark

Existing work:

  • Large number of (long-)slit spectroscopic studies

  • (Mathewson et al., Courteau, …)

  • Few integral-field studies (IFU, Fabry-Perot, …)

  • Environment independent,

  • excellent “beam”

  • ⇒ Datasets available

  • ⇒ IFU groundwork incomplete

  • (simulate higher z IFU work)

Hα velocity fields:

(Chemin et al. 2005)

(Epinet et al. 2009)


The tully fisher relation across morphological types and redshift

Hα T-F: Intermediate z

VLT KMOS:

KMOS:

  • 2nd generation VLT instrument

  • 24 deployable IFUs over 7.2’ FOV

  • (2.8” x 2.8”, 14 x 14 spaxels)

  • JHK bands, R ≈ 3500

  • UK: Durham, Oxford, UKATC

  • Germany: MPE, Munich Obs, ESO

  • 250 GTO nights, 120 for UK

  • ⇒ Galaxy evolution from z = 1 to 10 (SFH, K-S, mergers, Mdyn, …)

(MPE)


The tully fisher relation across morphological types and redshift

Hα T-F: Intermediate z

Mid-z galaxy survey:

KMOS UK GTO:

  • Large z = 0.5 - 3.0 survey

  • (Oxford, Durham?, MPE?)

  • Pilot: ≈20-30 objects per bin

  • 3 redshifts (0.8, 1.5, 2.4)

  • 2 morphological bins

  • Total: ≈1000 galaxies ?

  • CANDELS fields

  • (+ different environments)

  • ⇒ Adapt current (z = 0) tools

  • ⇒ Tully-Fisher (galaxy) evolution at intermediate redshifts

(Miller et al. 12)

(Förster Schreiber et al. 2009)


The tully fisher relation across morphological types and redshift

Hα T-F: Intermediate z

Mid-z galaxy survey:

KMOS UK GTO:

  • Large z = 0.5 - 3.0 survey

  • (Oxford, Durham?, MPE?)

  • Pilot: ≈20-30 objects per bin

  • 3 redshifts (0.8, 1.5, 2.4)

  • 2 morphological bins

  • Total: ≈1000 galaxies ?

  • CANDELS fields

  • (+ different environments)

  • ⇒ Adapt current (z = 0) tools

  • ⇒ Tully-Fisher (galaxy) evolution at intermediate redshifts

(Koekemoer et al. 2011)

(Miller et al. 2011)


The tully fisher relation across morphological types and redshift

The Tully-Fisher Relation: Across Morphological Types and Redshift

Martin Bureau, Oxford University

Stellar:Michael Williams, Michele Cappellari

CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D Team

NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

NANTEN2 consortium

KMOS:Sarah Miller, Mark Sullivan, Roger Davies,

UK KMOS consortium

Plans:Galaxy formation, scaling relations, T-F relation

Stellar T-F: data, modeling, Vc , S0-S evolution

CO T-F: data, Vc biases, prospects

High-z: local benchmarks, ALMA, VLT/KMOS

Summary


The tully fisher relation across morphological types and redshift

T-F Conclusions

HI:- Trivial locally for late-type galaxies

⇒ Only exceptionally in early-types, high-density environments

⇒ Impossible to mid-z until SKA

Stars:- JAM successful; m2 good tracer of enclosed mass; Vcirc reliable

⇒ Possible for all morphological types, environments

⇒ Always time-consuming, impossible beyond local universe

CO:- Limited work locally; needs to be expanded

⇒ Possible for all morphological types, environments

⇒ Routine to intermediate z with ALMA + LMT

Hα:- Extensive work locally; needs to be expanded to IFUs

⇒ Difficult in early-types, ok for all environments

⇒ Routine to intermediate z with 2nd generation 8m telescopes


  • Login