slide1
Download
Skip this Video
Download Presentation
The Tully-Fisher Relation: Across Morphological Types and Redshift

Loading in 2 Seconds...

play fullscreen
1 / 49

The Tully-Fisher Relation: Across Morphological Types and Redshift - PowerPoint PPT Presentation


  • 121 Views
  • Uploaded on

The Tully-Fisher Relation: Across Morphological Types and Redshift. Martin Bureau , Oxford University. Stellar: Michael Williams, Michele Cappellari CO: Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas 3D Team NANTEN2: Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' The Tully-Fisher Relation: Across Morphological Types and Redshift' - lis


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

The Tully-Fisher Relation: Across Morphological Types and Redshift

Martin Bureau, Oxford University

Stellar:Michael Williams, Michele Cappellari

CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D Team

NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

NANTEN2 consortium

KMOS:Sarah Miller, Mark Sullivan, Roger Davies,

UK KMOS consortium

Plans:Galaxy formation, scaling relations, T-F relation

Stellar T-F: data, modeling, Vc , S0-S evolution

CO T-F: data, Vc biases, prospects

High-z: local benchmarks, ALMA, VLT/KMOS

Summary

slide2

The Tully-Fisher Relation: Across Morphological Types and Redshift

Martin Bureau, Oxford University

Stellar:Michael Williams, Michele Cappellari

CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D Team

NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

NANTEN2 consortium

KMOS:Sarah Miller, Mark Sullivan, Roger Davies,

UK KMOS consortium

Plans:Galaxy formation, scaling relations, T-F relation

Stellar T-F: data, modeling, Vc , S0-S evolution

CO T-F: data, Vc biases, prospects

High-z: local benchmarks, ALMA, VLT/KMOS

Summary

slide3

Hubble Sequence

(spheroid)

SAa

SAb

SAc

SAd

Mass, velocity dispersion,

L-weighted age, density

Irr

S0

(Astronomy 01)

E3

E1

E7

Gas fraction, rotation, SF

SBc

(disk)

SBa

SBb

SBd

slide4

Broad Aims

Goals:

  • Mass assembly history

(gas, stars, dark matter)

  • Chemical enrichment history

(age, metallicity, SFH)

Context:

  • Hierarchical structure formation

(merging, harassment, ...)

  • Internal dynamical evolution

(BH/triaxiality-driven, ...)

⇒ Exploit "fossil record"

(near-field cosmology)

(HST HDF)

(SINS)

slide5

Scaling Relations (correlations)

Stellar Evolution:

  • Colour - mag. diagram (CMD)
  • UVX - Mg relation

Galaxy Evolution:

  • Colour - mag. diagram (CMD)
  • Fundamental plane (FP)

Star Formation:

  • Far infrared - radio correlation
  • Kennicutt - Schmidt law (K-S)

Underlying Physics:

  • M/L - velocity dispersion
  • Dark - visible matter

(Micela et al. 88)

(Blanton et al. 06)

(Combes et al. 07)

slide6

Tully-Fisher: Definition

Definition:

  • Originally, optical luminosity (magnitude) vs. HI linewidth
  • (corrected for disk inclination)
  • Generally, any luminosity
  • (stellar mass) vs. any rotational velocity (total mass)
  • ⇒ Luminous vs. dark matter

Uses:

  • Distance determination
  • (H0, peculiar velocity field, …)
  • ⇒ M/L evolution with z (and type)
  • (zero-point and scatter)

Lum.

(Bureau et al. 96)

V/sin i

slide7

Tully-Fisher: M/L evolution

Scaling:

  • We have:
  • G M / R2 = V2 / R
  • M α V2 R
  • We define:
  • M/L
  • Σ = M / πR2
  • We get:
  • L = V4 / πG2 (M/L) Σ
  • L α V4(M/L)-1 Σ-1

M/L:

  • Stellar populations
  • - Age
  • - Metallicity
  • - Non-Solar abundance ratio
  • - Star formation history (SFH)
  • - Initial mass function (IMF)
  • - …
  • Dark matter
  • Size scale
  • (Gas-rich) disk galaxies
slide9

Stellar + CO T-F: Goals

Goals:

  • M/L evolution
  • Constraints on galaxy formation through zero-point and scatter
  • Probe E-S0-S interface
  • (stellar pops, DM, structure)
  • Constrain E-S0-S evolution
  • Identical treatment of E/S0/S
  • (avoid systematic biases)

E - S0 - S continuity:

slide10

The Tully-Fisher Relation: Across Morphological Types and Redshift

Martin Bureau, Oxford University

Stellar:Michael Williams, Michele Cappellari

CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D Team

NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

NANTEN2 consortium

KMOS:Sarah Miller, Mark Sullivan, Roger Davies,

UK KMOS consortium

Plans:Galaxy formation, scaling relations, T-F relation

Stellar T-F: data, modeling, Vc, S0-S evolution

CO T-F: data, Vc biases, prospects

High-z: local benchmarks, ALMA, VLT/KMOS

Summary

slide11

Stellar T-F: Sample, data

  • Sample:
  • 28 edge-on disk galaxies:
  • 14 S0, 14 Sa-Sc
  • Mostly bright, HSB, field objects
  • (Bureau & Freeman 1999)
  • K-band images
  • (Bureau et al. 06)
  • Stellar kinematics (2-3 Re)
  • (Chung et al. 04)
  • ⇒ Inclination known, need to derive (corrected) rotation velocity

Stellar kinematics:(V, σ, h3, h4)

(Chung et al. 04)

v

σ

h3

h4

vrms = √(v2 + σ2)

slide12

Stellar T-F: Modeling method

Luminous MGE model:

  • Multi-Gaussian expansion of image (incl. negative terms)
  • ⇒ Radially constant M/L* free
  • Dark NFW halo:
  • Assumed mass-concentration relation
  • ⇒ Dark halo virial mass MDM free
  • JAM dynamical model:
  • Jeans axisymmetric modeling
  • ⇒ Radially constant orbital anisotropy βz free

JAM:

MDM

M/L*

(Williams et al. 09)

* Rotation dominant (esp. in outer parts),

so anisotropy effects unimportant

(mass-anisotropy degeneracy minimised)

slide13

Stellar T-F: Velocity measure

  • Velocities:
  • Need single measure of velocity
  • Flat (or asymptotic) velocity
  • Systematics:
  • Past works compare modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases
  • ⇒ Here, compare Vcirc with Vcirc

Velocity definition:

(Williams et al. 10)

V (km s-1)

R (arcsec)

slide14

Stellar T-F: Velocity measure

  • Velocities:
  • Need single measure of velocity
  • Flat (or asymptotic) velocity
  • Systematics:
  • Past works compare modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases
  • ⇒ Here, compare Vcirc with Vcirc

Velocity comparisons:

Vcirc - Vdrift

S0

S

S0 (Bedregal et al. 06)

VHI - Vdrift

(Williams et al. 10)

slide15

Stellar T-F: Velocity measure

VLA+ATCA:

  • Velocities:
  • Need single measure of velocity
  • Flat (or asymptotic) velocity
  • Systematics:
  • Past works compare modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases
  • ⇒Here, compare Vcirc with Vcirc

(Chung et al. 06, 12)

slide16

Stellar T-F: S0 vs Sab

S0 vs Sab:

  • Large offset to Sc-Sd T-F relation for both S0 and Sab
  • S0 fainter than Sab by
  • 0.50 ± 0.15 mag at K (identical treatment)
  • (smaller than previous studies)
  • Evolution:
  • Fading timescale ≈1 Gyr,
  • but S0 up to z≈1
  • ⇒ Passive evolution(exclusively) ruled out

T-F relation:K-band

(14 S0 + 14 Sa-Sc, mostly field spirals)

(K-band; 2-3 Re stellar kinematics)

S0

S

(Williams et al. 10)

slide17

Baryonic T-F: S0 vs Sab

Baryonic and “total” T-F:

  • S0 and Sab still slightly offset when considering stellar mass
  • (0.2 dex) (worse if gas added)
  • S0 – Sab offset unchanged for dynamical mass
  • (although Mdyn rather uncertain)
  • If S0 – Sab Mdyn offset is true, then “broken homology”
  • (S0 more compact by 20%)
  • ⇒ S0 not simply S fading…
  • dynamical “processing”
  • required

T-F relation:M* and Mdyn

M*

S0

S

Mdyn

(Williams et al. 10)

slide18

Baryonic T-F: S0 vs Sab

Baryonic and “total” T-F:

  • S0 and Sab still slightly offset when considering stellar mass
  • (0.2 dex) (worse if gas added)
  • S0 – Sab offset unchanged for dynamical mass
  • (although Mdyn rather uncertain)
  • If S0 – Sab Mdyn offset is true, then “broken homology”
  • (S0 more compact by 20%)
  • ⇒ S0 not simply S fading…
  • dynamical “processing”
  • required

T-F relation:M* and Mdyn

M α V2 R

M α V4(M/L)-1 Σ-1

slide19

The Tully-Fisher Relation: Across Morphological Types and Redshift

Martin Bureau, Oxford University

Stellar:Michael Williams, Michele Cappellari

CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D Team

NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

NANTEN2 consortium

KMOS:Sarah Miller, Mark Sullivan, Roger Davies,

UK KMOS consortium

Plans:Galaxy formation, scaling relations, T-F relation

Stellar T-F: data, modeling, Vc , S0-S evolution

CO T-F: data, Vc biases, prospects

High-z: local benchmarks, ALMA, VLT/KMOS

Summary

co t f caveats and pitfalls
Possible Pitfalls:

CO may not extend to flat part of rotation curve

Geometry and inclination ill-defined

CO-rich populations unrepresentative of general galaxy population (biased)

CO T-F: Caveats and pitfalls

(Young et al. 11)

(Young et al. 11)

co t f atlas 3d survey
Sample selection:

MK < -21.5

D < 41 Mpc

|δ – 29º| < 35º , |b| > 15º

All E/S0s, no spiral structure

Data:

SAURON optical wide-field IFU

SDSS/INT optical + 2MASS NIR imaging

IRAM 30m CO (1-0)+(2-1) + CARMA CO (1-0) follow-up

WSRT HI (δ > 10º, excl. Virgo)

Various archives (XMM, Chandra, GALEX, HST, Spitzer, …)

CO T-F: Atlas3D survey

Red

Blue

Atlas3D

g-r

(Cappellari et al. 11)

Mr

⇒ 260 galaxies

slide24

CO T-F: Single-dish survey

IRAM 30m Survey:

  • CO(1-0,2-1), 23/12” FWHM
  • 260 Atlas3D E/SOs
  • Sensitivity: 3 mK (30 km s-1)

3 x 107 M⊙

Results:

  • 22% detection rate
  • MH2 = 107.1-9.3 M⊙
  • CO(2-1)/CO(1-0) ≈ 1 - 2
  • Largely independent of:
  • luminosity, dynamics (λR),
  • environment (Virgo), …

High S/N:

Low S/N:

(Combes, Young & Bureau 07; Young et al. 11)

slide25

CO T-F: Single-dish survey

IRAM 30m Survey:

  • CO(1-0,2-1), 23/12” FWHM
  • 260 Atlas3D E/SOs
  • Sensitivity: 3 mK (30 km s-1)

3 x 107 M⊙

Results:

  • 22% detection rate
  • MH2 = 107.1-9.3 M⊙
  • CO(2-1)/CO(1-0) ≈ 1 - 2
  • Largely independent of:
  • luminosity, dynamics (λR),
  • environment (Virgo), …

Optical CMD + CO:

(Young et al. 11, 13)

slide26

CO T-F: Inclination measures

Stellar:

  • Galaxy axis ratio
  • (intrinsic thickness; c/a=0.34)
  • JAM best-fit inclination

(Molecular) Gas:

  • Unsharp-masked image
  • ellipse fitting
  • Tilted-ring model best-fit inclination
  • ⇒ Error not strongly dependent on inclination

Stellar i :

(Davis et al. 11a)

(Cappellari et al. 10)

slide27

CO T-F: Inclination measures

Atlas3D (CARMA):

  • H2 and stars often misaligned:
  • ≥1/3 external (accretion/cooling)
  • ≤2/3 internal (stellar mass loss)
  • Always aligned in clusters
  • Randomly misaligned in field
  • ⇒ Increased scatter (and bias)
  • in field ?

(Alatalo et al. 12)

H2 - stars

(Davis et al. 11b)

Misalignment angle

slide28

CO T-F: Inclination measures

Stellar:

  • Galaxy axis ratio
  • (intrinsic thickness; c/a=0.34)
  • JAM best-fit inclination

(Molecular) Gas:

  • Unsharp-masked image
  • ellipse fitting
  • Tilted-ring model best-fit inclination
  • ⇒ Error not strongly dependent on inclination

(Molecular) gas i :

(Davis et al. 11a)

(Cappellari et al. 10)

slide29

CO T-F: Velocity measure

Selection:

  • Double-horn profiles likely to reach Vflat
  • (imperfect diagnostic)
  • CO traces Vflat globally
  • (not Vpeak)
  • CO traces the circular velocity locally
  • ⇒ CO excellent kinematic tracer

Integrated profiles :

(Young et al. 11)

slide30

CO T-F: Velocity measure

CO vs. Ionised Gas:

  • CO rotating faster (colder) then ionised gas
  • (and stars)
  • Nearly perfect tracer of the circular velocity
  • Better (and excellent) tracer of dynamical mass
  • : BIMA CO (1-0)

--- : SAURON JAM model

+ : SAURON stars

+ : SAURON ionised gas

(Davis et al. 12)

slide31

CO T-F: Results

CO Tully-Fisher:

  • Many (potential) pitfalls
  • Many better than expected
  • Many simple workarounds
  • Slope and zero-point
  • robustly recovered
  • Standard intrinsic scatter
  • ⇒ Stellar / Jeans T-F
  • easily recovered
  • ⇒ No or minimum efforts !
  • ⇒ Great prospect to probe
  • M/L(z) with LMT+ALMA…

CO Tully-Fisher relations:

(Davis et al. 11a)

slide32

CO T-F: Results

ETG/FR vs Sc:

  • Sc follow spirals in HI
  • ETG/FR fainter than Sc by 1.0 ± 0.1 mag at K-band
  • (identical treatment)
  • Consistent with Williams et al.’s 0.5 mag at K-band offset for Sab
  • (consistent with past work)
  • ⇒ CO T-F easily recovered across all Hubble types
  • (and environments)

CO Tully-Fisher relations:

(Chung et al., in prep)

slide35

The Tully-Fisher Relation: Across Morphological Types and Redshift

Martin Bureau, Oxford University

Stellar:Michael Williams, Michele Cappellari

CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D Team

NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

NANTEN2 consortium

KMOS:Sarah Miller, Mark Sullivan, Roger Davies,

UK KMOS consortium

Plans:Galaxy formation, scaling relations, T-F relation

Stellar T-F: data, modeling, Vc , S0-S evolution

CO T-F: data, Vc biases, prospects

High-z: local benchmarks, ALMA, VLT/KMOS

Summary

slide36

CO T-F: Local benchmark

Existing work:

  • Number of studies and objects limited
  • (Dickey, Lavezzi, Sofue, Tutui, …)
  • Large single dishes or interferometry
  • ⇒ Non-optimal datasets
  • ⇒ Hard to compare with future high-z work

CO Tully-Fisher relations:

(Lavezzi & Dickey 1998)

(Schoeniger & Sofue 1997)

(Dickey & Kazes 1992)

slide37

CO T-F: Local benchmark

NANTEN2:

  • 4m mm/sub-mm dish, Atacama
  • CO(1-0) + (2-1) receivers
  • (1 GHz ≈ 2600 km s-1 bandwidth)
  • (61 kHz ≈ 0.15 km s-1 resolution)
  • Small consortium
  • ⇒ Large beam, 170” at CO(1-0)
  • (entire galaxies)
  • ⇒ Extensive, flexible scheduling

NANTEN2:

slide38

CO T-F: Local benchmark

Nearby galaxy survey:

  • Pilot observations:
  • - 30+ galaxies observed
  • (≈40 min on-source;
  • single pointing)
  • - Mosaics straightforward
  • (few attempted)
  • Full survey:
  • - 250+ “full” galaxies (≈3 yrs)
  • - Preferably no CO detection,
  • (non-TF) accurate distance
  • ⇒ z = 0 benchmark
  • (star formation, gas-to-dust ratio, …)

NANTEN2:

(Yoshiike et al., in prep)

slide39

CO T-F: Local benchmark

Nearby galaxy survey:

  • Pilot observations:
  • - 30+ galaxies observed
  • (≈40 min on-source;
  • single pointing)
  • - Mosaics straightforward
  • (few attempted)
  • Full survey:
  • - 250+ “full” galaxies (≈3 yrs)
  • - Preferably no CO detection,
  • (non-TF) accurate distance
  • ⇒ z = 0 benchmark
  • (star formation, gas-to-dust ratio, …)

NANTEN2:

(Yoshiike et al., in prep)

slide40

CO T-F: Intermediate z

ALMA:

  • 50 x 12m dishes to 16 km
  • 12 x 7m dishes compact array
  • 4 x 12m dishes total power
  • 10 bands, 30 - 950 GHz
  • (bands 3, 6, 7, 9: cycles 0+1)
  • (bands 4, 8, 10: in progress)
  • (bands 1, 2, 5: ???)
  • ⇒ Detect CO or CII in MW-like galaxy at z = 3 in 24 hr
  • (z = 1 in 1 hr?)
  • LMT + GBT promising

ALMA:

slide41

CO T-F: Intermediate z

ALMA:

  • CO(1-0): Band 3: z = 0.0 – 0.4
  • Band 2: z = 0.3 – 0.7
  • Band 1: z = 1.6 – 3.7
  • CO(2-1): Band 6: z = 0.0 – 0.1
  • Band 5: z = 0.1 – 0.4
  • Band 4: z = 0.4 – 0.8
  • Band 3: z = 1.0 – 1.7
  • Band 2: z = 1.6 – 2.4
  • Band 1: z = 4.1 – 6.4
  • ⇒ Great T-F machine
  • (spatially-resolved or not)
  • ⇒ Need better understanding
  • of CO(2-1)

ALMA:

Spiral at z = 0.0, optical, CO(2-1), cont. + CO(6-5)

(ESO)

QSO at z = 4.4, CII 158 μm (unresolved)

(ESO)

slide42

CO T-F: Intermediate z

ALMA:

  • CO(1-0): Band 3: z = 0.0 – 0.4
  • Band 2: z = 0.3 – 0.7
  • Band 1: z = 1.6 – 3.7
  • CO(2-1): Band 6: z = 0.0 – 0.1
  • Band 5: z = 0.1 – 0.4
  • Band 4: z = 0.4 – 0.8
  • Band 3: z = 1.0 – 1.7
  • Band 2: z = 1.6 – 2.4
  • Band 1: z = 4.1 – 6.4
  • ⇒ Great T-F machine
  • (spatially-resolved or not)
  • ⇒ Need better understanding
  • of CO(2-1)

CARMA:

(EGNoG survey: spirals at z = 0.3)

(Bauermeister et al. 13)

slide43

Hα T-F: Local benchmark

Existing work:

  • Large number of (long-)slit spectroscopic studies
  • (Mathewson et al., Courteau, …)
  • Few integral-field studies (IFU, Fabry-Perot, …)
  • Environment independent,
  • excellent “beam”
  • ⇒ Datasets available
  • ⇒ IFU groundwork incomplete
  • (simulate higher z IFU work)

Hα Tully-Fisher relations:

(C. Flynn)

(EGG, Cornell U.)

slide44

Hα T-F: Local benchmark

Existing work:

  • Large number of (long-)slit spectroscopic studies
  • (Mathewson et al., Courteau, …)
  • Few integral-field studies (IFU, Fabry-Perot, …)
  • Environment independent,
  • excellent “beam”
  • ⇒ Datasets available
  • ⇒ IFU groundwork incomplete
  • (simulate higher z IFU work)

Hα velocity fields:

(Chemin et al. 2005)

(Epinet et al. 2009)

slide45

Hα T-F: Intermediate z

VLT KMOS:

KMOS:

  • 2nd generation VLT instrument
  • 24 deployable IFUs over 7.2’ FOV
  • (2.8” x 2.8”, 14 x 14 spaxels)
  • JHK bands, R ≈ 3500
  • UK: Durham, Oxford, UKATC
  • Germany: MPE, Munich Obs, ESO
  • 250 GTO nights, 120 for UK
  • ⇒ Galaxy evolution from z = 1 to 10 (SFH, K-S, mergers, Mdyn, …)

(MPE)

slide46

Hα T-F: Intermediate z

Mid-z galaxy survey:

KMOS UK GTO:

  • Large z = 0.5 - 3.0 survey
  • (Oxford, Durham?, MPE?)
  • Pilot: ≈20-30 objects per bin
  • 3 redshifts (0.8, 1.5, 2.4)
  • 2 morphological bins
  • Total: ≈1000 galaxies ?
  • CANDELS fields
  • (+ different environments)
  • ⇒ Adapt current (z = 0) tools
  • ⇒ Tully-Fisher (galaxy) evolution at intermediate redshifts

(Miller et al. 12)

(Förster Schreiber et al. 2009)

slide47

Hα T-F: Intermediate z

Mid-z galaxy survey:

KMOS UK GTO:

  • Large z = 0.5 - 3.0 survey
  • (Oxford, Durham?, MPE?)
  • Pilot: ≈20-30 objects per bin
  • 3 redshifts (0.8, 1.5, 2.4)
  • 2 morphological bins
  • Total: ≈1000 galaxies ?
  • CANDELS fields
  • (+ different environments)
  • ⇒ Adapt current (z = 0) tools
  • ⇒ Tully-Fisher (galaxy) evolution at intermediate redshifts

(Koekemoer et al. 2011)

(Miller et al. 2011)

slide48

The Tully-Fisher Relation: Across Morphological Types and Redshift

Martin Bureau, Oxford University

Stellar:Michael Williams, Michele Cappellari

CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz

Atlas3D Team

NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

NANTEN2 consortium

KMOS:Sarah Miller, Mark Sullivan, Roger Davies,

UK KMOS consortium

Plans:Galaxy formation, scaling relations, T-F relation

Stellar T-F: data, modeling, Vc , S0-S evolution

CO T-F: data, Vc biases, prospects

High-z: local benchmarks, ALMA, VLT/KMOS

Summary

slide49

T-F Conclusions

HI:- Trivial locally for late-type galaxies

⇒ Only exceptionally in early-types, high-density environments

⇒ Impossible to mid-z until SKA

Stars:- JAM successful; m2 good tracer of enclosed mass; Vcirc reliable

⇒ Possible for all morphological types, environments

⇒ Always time-consuming, impossible beyond local universe

CO:- Limited work locally; needs to be expanded

⇒ Possible for all morphological types, environments

⇒ Routine to intermediate z with ALMA + LMT

Hα:- Extensive work locally; needs to be expanded to IFUs

⇒ Difficult in early-types, ok for all environments

⇒ Routine to intermediate z with 2nd generation 8m telescopes

ad