1 / 12

Charakteristiky motorů

Charakteristiky motorů. Rychlostní a úplná charakteristika. Nezaměňovat M jako závisle proměnnou (rychlostní) a nezávisle proměnnou (úplná). Měrná spotřeba paliva b.s.f.c. a výkon motoru. Střední užitečný tlak b.m.e.p. a přebytek vzduchu. Vznětový přeplňovaný motor o zdvihovém objemu 1.2 dm 3.

liluye
Download Presentation

Charakteristiky motorů

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Charakteristiky motorů

  2. Rychlostní a úplná charakteristika Nezaměňovat M jako závisle proměnnou (rychlostní) a nezávisle proměnnou (úplná)

  3. Měrná spotřeba paliva b.s.f.c. a výkon motoru. Střední užitečný tlak b.m.e.p. a přebytek vzduchu. Vznětový přeplňovaný motor o zdvihovém objemu 1.2 dm3 Příklady vnějších rychlostních charakteristik motoru

  4. Příklady úplných charakteristik motoru Měrná spotřeba paliva a přebytek vzduchu

  5. Maximální tlak oběhu a mechanická účinnost

  6. Tlak plnicího vzduchu (přeplňovaný vznětový motor)

  7. Engine torque or power is size-dependent; specific work w =W/m depends on pressure upstream of an engine (cylinder charge mass depends on cylinder charge density)  for comparison of different engines their cycle work should be normalized by engine stroke (swept) volume Vz; different works (in cylinder ... indicated, at crankshaft end ... brake mean work, etc.) - marked generally by dot - can be used in the same way Basic engine parameters - mean effective pressure (volume-specific work) (•).m.e.p. ... (brake b or e;, indicated ... i, etc.) mean effective pressure; - no real pressure even if measured in [MPa] or [bar] but volume-specific work [kJ/dm3=MPa]; SI naturally aspirated engine .... b.m.e.p.  1 MPa

  8. Engine speed is size-dependent, as well, i.e., on strokeZ; real inertia caused stress and by contact path determined wear depends rather on velocity not on speed (frequency of cycles);  therefore, mean piston velocityfor comparison of different engines: Basic engine parameters - piston mean velocity Upper limit of medium speed is cca 10 m.s-1 . Engine power is then using engine swept volume using boreD, stroke Z and corresponding piston normal-to-axis area:

  9. Efficiency as output/input. Output is unambiguous - engine work or work/time=power. According to point of measurement  ... e (b) or i or ... Input optional - frequently maximum chemical energy of fuel, „calorific value“ at environment conditions, i.e, -H0, often with slight corrections (see later). Really usable is -G0 but it is unpractical (immeasurable) and f=differences are not big (see $24 ).  therefore, efficiency defined in analogy to thermal one as: Basic engine parameters - efficiency and .s.f.c.

  10. Efficiencies are interesting as an engine economy parameter. They don’t depend on the sort of fuel. More practical using certain fuel is a specific fuel consumption •.s.f.c.= =mp• in g.kW-1.h-1 Basic engine parameters - efficiency and .s.f.c. Calorific value of hydrocarbon fuels (gasoline, diesel oil)  42 ... 43 MJ.kg-1 36% ....  235 g.kW-1.h-1 Efficiencies of a certain class of engines are not very variable. Therefore, it can be used for quick assessment of relation between fuel flow rate and engine power  .m.e.p. or torque from fuel cycle mass. If air-to-fuel A/F ratio is known (stoichiometric air/ hydrocarbon fuel A/F  15), air specific consumption can be easily determined.

  11. Determine brake mean effective pressure [MPa], mean piston velocity [m.s-1] and both nominal and maximum efficencies for Sulzer 14 RTA 96C (see Lecture 1). Calorific value of fuel 42.7 MJ.kg-1. Calculate fuel specific consumption [kg.kW-1h-1] and air flow rate [kg.h-1]. If air-to-fuel A/F ratio is 30, calculate air specific consumption [kg.kW-1h-1] and air flow rate [kg.s-1]. 1‘=0.3047995 m = 12“ 1 (USA) galon=3.785434 dm3 1 lb = 0.4535924 kg 1 psi = 6894.76 Pa 1 HP = 745,7 W 1 k (PS atp.) = 1 kp.m/s = 735.5 W Basic engine parameters – homework 1

  12. Car route fuel consumption dm3.(100 km)-1 (USA other units and reciprocal value - miles/USA gallon) Basic engine parameters - efficiency and .s.f.c. - an example • Examle of “1 liter car” feasibility: • best car diesel engines reach 200 g.kW-1.h-1, i.e, • if density of fuel 1kg.dm-3 (really 0.85kg.dm-3) • 5 kW at 100 km.h-1 wil be just the maximum power •  realistic only if extreme low rolling resistance and air drag is achieved. No margin of power for overtaking, slopes, etc. There is no big margin in efficiency - the best ship medium-speed two-stroke engines feature some 165 g.kW-1.h-1!

More Related