M todos matem ticos de especialidad mec nica m quinas
This presentation is the property of its rightful owner.
Sponsored Links
1 / 19

Métodos Matemáticos de Especialidad Mecánica-Máquinas PowerPoint PPT Presentation


  • 81 Views
  • Uploaded on
  • Presentation posted in: General

Métodos Matemáticos de Especialidad Mecánica-Máquinas. A NÁLISIS DINÁMICO DE UN VEHÍCULO CON 15 GRADOS DE LIBERTAD. J UAN C ARLOS Á LVAREZ E LIPE A LEJANDRO A PARICIO R UÍZ C ARLOS S ÁNCHEZ M ONTARELO Á LVARO Y ÁÑEZ G ONZÁLEZ. C ONTENIDOS. Implementación del vehículo: CarModel01

Download Presentation

Métodos Matemáticos de Especialidad Mecánica-Máquinas

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


M todos matem ticos de especialidad mec nica m quinas

Métodos Matemáticos de EspecialidadMecánica-Máquinas

ANÁLISIS DINÁMICO DE UN VEHÍCULO CON 15 GRADOS DE LIBERTAD

JUAN CARLOS ÁLVAREZ ELIPEALEJANDRO APARICIO RUÍZ

CARLOS SÁNCHEZ MONTARELO ÁLVARO YÁÑEZ GONZÁLEZ


C ontenidos

CONTENIDOS

  • Implementación del vehículo: CarModel01

    • MacphersonGeometry

    • FiveLinkGeometry

    • ChassisGeometry

    • Cambios introducidos

  • Simulaciones

    • Aceleración-Frenada

    • Maniobra1: circulaciones en curva

    • Maniobra2: paso por bache

    • Maniobra3: slalom


Implementaci n del veh culo carmodel01

Implementación del vehículo: Carmodel01

  • Carmodel01 define todos los parámetros relativos al vehículo. Su geometría, inercia, constantes de amortiguadores, así como los tiempos de integración y las maniobras.

  • La geometría básica que implementa Carmodel01 consta de tres componentes principales: chasis, suspensiones delanteras y suspensiones traseras, que son introducidas a través de las respectivas funciones: CarModel01ChassisGeometry3, CarModel01MacPhersonGeometry3, CarModel01FivelinkGeometry3. Cada una de ellas aporta los puntos de los elementos, sus ecuaciones de restricción, coordenadas relativas y posiciones en el vector q de coordenadas. Veamos su estructura de forma más detallada…


Implementaci n del veh culo carmodel011

Implementación del vehículo : Carmodel01

· Carmodel01MacphersonGeometry3

Esta función se encarga de todo lo relativo a la suspensión delantera:

- Definición de la matriz P de puntos que componen la parte izquierda.

- Ajuste de la posición del centro de la rueda en función de vía batalla y radio.

- Extensión a la parte derecha por simetría.

- Definición de la matriz U de vectores. Los vectores de los ejes de las ruedas pueden ser simétricos o no en función de cómo queramos definir el ángulo.

- Selección de puntos y vectores compartidos con el chasis.

- Cálculo de distancias entre elementos en las condiciones iniciales de cara a ecuaciones de restricción, y distancias como coordenadas relativas (DIST)

- Matriz ANGLES de ángulos medidos como coordenadas relativas.

- Matriz CONSTR de ecuaciones de restricción a través de la función MacPhersonCONSTR2 que implementa primero las ecuaciones de la parte izquierda, y después las de la derecha introduciendo un desplazamiento en los índices de los puntos. La ecuación de distancia relativa del desplazamiento de la barra de dirección no se vuelve a escribir.


Implementaci n del veh culo carmodel012

Implementación del vehículo: Carmodel01

· Carmodel01FiveLinkGeometry3

Esta función se encarga de todo lo relativo a la suspensión trasera:

- Definición de la matriz P de puntos que componen la parte izquierda.

- Ajuste de la posición del centro de la rueda en función de vía batalla y radio.

- Extensión a la parte derecha por simetría.

- Definición de la matriz U de vectores. Los vectores de los ejes de las ruedas pueden ser simétricos o no en función de cómo queramos definir el ángulo.

- Selección de puntos y vectores compartidos con el chasis.

- Cálculo de distancias entre elementos en las condiciones iniciales de cara a ecuaciones de restricción, y distancias como coordenadas relativas (DIST)

- Matriz ANGLES de ángulos medidos como coordenadas relativas.

- Matriz CONSTR de ecuaciones de restricción a través de la función FivelinkSuspCONSTR2 que implementa primero las ecuaciones de la parte izquierda, y después las de la derecha introduciendo un desplazamiento en los índices de los puntos.


Implementaci n del veh culo carmodel013

Implementación del vehículo: Carmodel01

· Carmodel01FiveLinkGeometry3

Esta función se encarga de definir el chasis:

- Matriz CONSTR de ecuaciones de restricción a través de la función ChassisCONSTR:

- Define una base para el chasis sirviéndose del vector desde el centro del coche al de la suspensión delantera y otros dos vectores horizontal y vertical.

- Sirviéndose de los puntos definidos anteriormente como compartidos con el chasis (pointsInChassis), define las ecuaciones de restricción del mismo, definiendo primero las de la base y fijando el resto de puntos a ella como sólido rígido.


Implementaci n del veh culo carmodel014

Implementación del vehículo: Carmodel01

  • Una vez importados todos los puntos, vectores y ecuaciones de restricción, se concatenan las matrices P,U, DIST, ANGLES y CONSTR dadas por cada una de las funciones, y se reenumeran las columnas de índices en q para evitar errores.

  • Se introduce un nuevo triedro para evitar singularidades en la posición y poder medir los ángulos de cabeceo, balanceo y guiñada de forma que sean coordenadas independientes en todo momento.

  • Se compone la matriz de inercias del vehículo.

  • Se define todo lo relativo a los resortes y amortiguadores, así como ruedas (coordenadas relativas, ejes, puntos, ángulos)

  • Formación del vector q.


Implementaci n del veh culo carmodel015

Implementación del vehículo: Carmodel01

  • Cambios introducidos:

- De cara a introducir las fuerzas aerodinámicas en el modelo hace falta introducir los coeficientes Cx y Af que contienen el valor del coeficiente aerodinámico en dirección X (avance del vehículo) y el área frontal. Puesto que estos coeficientes son propios de un modelo de coche se ha decidido introducirlos como datos en Carmodel01. De igual manera y por simplificar se ha hecho lo mismo con la densidad del aire rho.

- Esto implica que hay que pasarle las variables Cx, Af y rho a toda función que opere con la fuerza aerodinámica.

- Se ha hecho necesario, pues, ampliar el número de argumentos que Carmodel01 devuelve, y los que reciben las funciones: ode113, rk4, derivRindex2, CarModel01Forces10, EnergyBalance.


Maniobras aceleraci n y frenada

Maniobras: Aceleración y frenada

  • Para conseguir una aceleración y una frenada del vehículo, es necesario modificar los pares que se ejercen sobre las ruedas en la función torquesManiobraAlce1, a la que no se le ha modificado el nombre por comodidad.

  • Se implementa una aceleración durante 2s, para posteriormente mantener la velocidad durante otros 3s, y finalmente frenar. El código queda así:

  • Es importante notar que durante

    el tiempo en que no hay ningún

    par aplicado el coche frena por

    efecto de las fuerzas aerodinámicas.

if t<2

tau = [0,0,1500,1500]';

elseif t>3

tau=[-1000,-1000,-1000,-1000]';

else

tau=[0,0,0,0]';

end


Maniobras aceleraci n y frenada1

Maniobras: Aceleración y frenada

  • Animación:

  • Gráfica vel-t:


Maniobras maniobra1

Maniobras: Maniobra1

  • En este caso se va a realizar un giro moderado sin pisar acelerador ni freno, es decir, sin modificar los pares sobre las ruedas. Después de dar la vuelta, se pretende seguir con una trayectoria recta, recuperando bruscamente.

  • Se implementa un desplazamiento inicial de la barra de dirección en la función maniobraAlce1.Tras ocho segundos, aproximadamente cuando ha girado 180º, la dirección se endereza más suavemente siguiendo un coseno que lleva el giro de volante hasta cero. En la página siguiente se presenta el código modificado en maniobraAlce1 y la trayectoria descrita por el vehículo.

  • Podemos comprobar que la velocidad del vehículo disminuye, aunque no haya par de frenada, por efecto de las fuerzas aerodinámicas

  • También es interesante apreciar la transferencia de carga del coche mientras gira, en el ángulo de balanceo. Se nota sobre todo durante la maniobra de enderezado


Maniobras maniobra11

Maniobras: Maniobra1

  • Trayectoria y código:

if t<8

zg = zgini+0.03;

zgp = 0;

zgpp = 0;

elseif t>8 && t<8.5

zg = zgini+0.03*cos((t-8)*2*pi/2);

zgp = -0.03*(2*pi/2)*sin((t-8)*2*pi/2);

zgpp = -0.03*(2*pi/2)^2*cos((t-8)*2*pi/2);

else

zg = zgini;

zgp = 0;

zgpp = 0;

end

Tramo en el que endereza


Maniobras maniobra12

Maniobras: Maniobra1

  • Animación:


Maniobras maniobra2

Maniobras: Maniobra2

  • Con esta simulación simplemente se pretende simular el efecto de un bache en la rueda trasera. El bache a simular pretende ser como un agujero, donde la rueda perdería contacto con el suelo. Se produce circulando en curva para justificar que solamente la rueda trasera se introduzca en el bache. Se mantiene un par pequeño para que el coche acelere un poco.

  • Para implementar esto, hacemos que la fuerza normal en dicha rueda sea prácticamente nula durante 25 milésimas de segundo (no puede ser nula porque daría error). Para ello, modificamos el archivo CarModel01Forces10.m haciendo:

% Fuerza normal en kN (perpendicular al suelo)

Fn = -kt*def/1000;

if t>0.5 && t<0.525

Fn(3)=0.0001;

end


Maniobras maniobra21

Maniobras: Maniobra2

  • Observamos cómo el esfuerzo normal en la rueda se hace nulo, mientras que en el resto aumenta ligeramente para compensar este hecho:

  • Además es interesante observar la evolución de los esfuerzos transversales al estar en curva y perder adherencia en una de las ruedas.


Maniobras maniobra22

Maniobras: Maniobra2

  • Animación:


Maniobras maniobra3

Maniobras: Maniobra3

  • En este caso pretendemos forzar al coche a que siga una trayectoria de slalom, como si tuviera que esquivar conos, dejando un pequeño par motor para que la velocidad no disminuya mucho por efecto de las fuerzas aerodinámicas.

  • Para conseguir esto, modificamos la función que contiene el guiado del desplazamiento de la barra de dirección, introduciendo en dicho desplazamiento una función sinusoidal de periodo 1.5s, y sus respectivas derivadas. Quedaría como se muestra en la página siguiente.

  • En este caso también es interesante apreciar la transferencia de carga en el ángulo de balanceo mientras realiza los cambios de dirección


Maniobras maniobra31

Maniobras: Maniobra3

  • Trayectoria, código y esfuerzos normales-tiempo:

zg = zgini+0.02*sin((t+0.375)*2*pi/1.5);

zgp = 0.02*cos((t+0.375)*2*pi/1.5)*(2*pi/1.5);

zgpp = -0.02*sin((t+0.375)*2*pi/1.5)*(2*pi/1.5)^2;


Maniobras maniobra32

Maniobras: Maniobra3

  • Animación:


  • Login