ロジスティクス工学
This presentation is the property of its rightful owner.
Sponsored Links
1 / 37

在庫配置の原則 PowerPoint PPT Presentation


  • 75 Views
  • Uploaded on
  • Presentation posted in: General

ロジスティクス工学 第5章 安全在庫配置モデル サプライ・チェインの設計と管理 3.3節 リスク共同管理 第6章 戦略的提携 第8章 製品設計とサプライ・チェイン設計の統合 補助資料: OptSCM による在庫管理入門 http://www.logopt.com/OptSCM/optscm.htm から pdf ファイルをダウンロード可能 東京商船大学 久保 幹雄. 在庫配置の原則. 在庫はまとめておいた方が少なくて済む! <- 統計の基礎(「サプライ・チェインの設計と管理」 pp.24-25 , Excel Table2-2.xls 参照).

Download Presentation

在庫配置の原則

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


3892821

ロジスティクス工学第5章安全在庫配置モデルサプライ・チェインの設計と管理3.3節 リスク共同管理第6章 戦略的提携第8章 製品設計とサプライ・チェイン設計の統合補助資料:OptSCMによる在庫管理入門 http://www.logopt.com/OptSCM/optscm.htmからpdfファイルをダウンロード可能東京商船大学久保 幹雄


3892821

在庫配置の原則

  • 在庫はまとめておいた方が少なくて済む!<- 統計の基礎(「サプライ・チェインの設計と管理」pp.24-25,Excel Table2-2.xls 参照)


Risk pooling

リスク共同管理(risk pooling)

  • 「サプライ・チェインの設計と管理」p.64 3.3節,Excel Table3-5.xls 参照(商品Aの需要)(リード時間は1と仮定している.)


3892821

練習問題5-1

  • 「サプライ・チェインの設計と管理」p.64 3.3節のスイカ紡の事例における表3.6(p.66)の商品Bの在庫レベルを計算するためのExcelファイルを作成せよ.

  • リード時間が1でなく,標準偏差1をもつ正規分布と仮定したときの,商品A,Bの安全在庫を計算せよ.(ヒント:p.64の公式を用いる.)


3892821

サプライ・チェインにおける在庫削減の手法

  • 複数拠点の在庫を1ヶ所に集約する!-> リスク共同管理(risk pooling)

  • 製品のバリエーションを増やすのを,なるべくサプライ・チェインの下流(需要側)でやる!->遅延差別化(delayed differentiation)また,そのために製品設計(サプライ・チェインの設計)から変える!->製造のための設計(design for manufacturing) , ロジスティクスのための設計(design for logistics)


3892821

平均,安全,最大在庫量

  • 需要の平均μ=100,標準偏差σ=100の正規分布(正確には負の部分を切り取った分布:切断正規分布)

  • サービスレベル(品切れを起こさない確率) 95%->安全在庫係数 1.65


Excel demand1 xls

平均,安全,最大在庫量のExcelによる計算(demand1.xls)

=C2-B2

=100*A2

=B2+1.65*100*SQRT(A2)


3892821

直列多段階モデル

発注後ちょうどL日後に品目(商品)の補充を行うことを保証している.

平均需要量=100個/日

標準偏差=100

の正規分布

保証リード時間

=0

保証リード時間

=0

部品

工場

工場

小売店

外部

供給

生産時間

     3日     2日      1日     1日

在庫費用(商品の価値)

     10円    20円     30円    40円


Excel scm1 xls

Excelによる表現1(scm1.xls)

保証リード時間:発注後から補充までの日数(アスクルなら1日)

  0段目と4段目の保証リード時間は固定

変数(ここを変える!)


Excel

Excelによる表現2

入庫リード時間:品目発注後に生産を開始できるまでの日数

1段階目の入庫リード時間=0段目の保証リード時間


Excel1

Excelによる表現3

補充リード時間:品目発注後に生産が完了するまでの日数

補充リード時間=入庫リード時間+生産時間


Excel2

Excelによる表現4

正味補充時間=補充リード時間ー保証リード時間

正味補充時間(日)の間の最大需要量分だけ安全在庫を

もっていれば,在庫切れがおきない!


Excel3

Excelによる表現5

総在庫費用=在庫費用*安全在庫係数(=1)*需要の標準偏差(=100)*√正味補充時間

*100*SQRT(       )

正味補充時間(日)の間の最大需要量分だけ安全在庫を

もっていれば,在庫切れがおきない!


Excel4

Excelによる表現6(最適解)


3892821

最適解


Dynamic programming

直列多段階モデルに対する動的計画法(DP: Dynamic Programming)

  • h(i): 第i段階の在庫費用

  • T(i): 第i段階の生産時間

  • D(t,i): t日間の第i段階の最大需要量

  • f(L,i): 第i段階における保証リード時間がLのときの最小費用

  • 再帰方程式f(L,i)= min {f(LI,i-1)+h(i)*D(LI+T(i)-L,i)} LI

  • 初期条件f(L,0)=0 for all L

i

i-1

L

LI

3

2

1

0

4


3892821

直列多段階モデルに対するDP(1)宣言とデータ読み込み

n = 4 'Number of Stages

Lmax = 10 '保証リード時間の最大値

Dim T() As Integer '生産時間

Dim h() As Integer '在庫費用

Dim f() As Long 'f(L,i):第i段階の保証リード時間がLのときの最小費用

Dim prev() As Integer 'prev(L,i): f(L,i)の最小値を達成するための第i-1段目の保証リード時間

'

ReDim T(n) As Integer

ReDim h(n) As Integer

ReDim f(Lmax, n) As Long

ReDim prev(Lmax, n) As Integer

'Read Data

For i = 0 To n

T(i) = Cells(2, i + 2).Value

h(i) = Cells(3, i + 2).Value

Next i


3892821

直列多段階モデルに対するDP(2)初期化とDPアルゴリズム

'DP

For i = 0 To n - 1

For L = 0 To 9

For L2 = 0 To 9

If L + T(i + 1) - L2 >= 0 Then

dummy = f(L, i) + h(i + 1) * 100 * Sqr(L + T(i + 1) - L2)

If f(L2, i + 1) > dummy Then

f(L2, i + 1) = dummy

prev(L2, i + 1) = L

End If

End If

Next L2

Next L

Next i

'Initialize

For i = 1 To n

For L = 0 To 9

f(L, i) = 999999

Next L

Next i


3892821

Min{

1832+h(2)*10*sqrt(2)

1414+h(2)*10*sqrt(3)

1000+h(2)*10*sqrt(4)

0 +h(2)*10*sqrt(5)}

=20*10*sqrt(5)

=4472

結果

最適値 f(0,4)=9732

最適保証リード時間

4段階=0

(顧客の保証リード時間

は0だから)

3段階 prev(0,4)=3

2段階 prev(3,3)=2

1段階 prev(2,2)=0

の順に読む.


3892821

木ネットワークの場合1(入庫リード時間)

入庫リード時間:品目発注後に生産を開始できるまでの日数

3日

入庫リード時間=max{3,10}=10日

保証リード時間

10日


3892821

木ネットワークの場合2(補充リード時間)

補充リード時間:品目発注後に生産が完了するまでの日数

3日

入庫リード時間=max{3,10}=10日

保証リード時間

10日

生産時間=1日

補充リード時間=10+1=11日


3892821

木ネットワークの場合3(正味補充時間)

正味補充時間=補充リード時間ー保証リード時間

         =11ー0=11日

3日

入庫リード時間=max{3,10}=10日

保証リード時間

=0日

保証リード時間

10日

生産時間=1日

補充リード時間=10+1=11日


3892821

木ネットワークの場合3(安全在庫)

正味補充時間=補充リード時間ー保証リード時間

         =11日

安全在庫

=11日間の

最大需要量

3日

保証リード時間

=0日

保証リード時間

10日

補充リード時間=10+1=11日


3892821

木ネットワークの場合5(保証リード時間を増やすと...)

(保証リード時間が)11日までは在庫が減少!

安全在庫も11日までは減少!

3日

保証リード時間

=1,2,・・・日

保証リード時間

10日

生産時間=1日

補充リード時間=10+1=11日


3892821

共同管理係数α

需要地点1

N(100,100)

平均100

標準偏差100

正規分布

倉庫

需要地点2

N(100,100)


Demand2 xls

需要の相関(共同管理係数による安全在庫の変化)demand2.xls


3892821

木ネットワークモデルの例

4日

0日

4

(3日)

6

(3日)

0日

1

(6日)

?日

需要

平均=100

標準偏差100

?日

3

(3日)

5

(3日)

?日

?日

?日

0日

2

(2日)

1日

7

(3日)

平均=100

標準偏差100


Scm2 xls

木ネットワークモデルの例データ(scm2.xls)

=MAX(B6,C6)

=F6

=MAX(D6,E6)

=B8-B6

=B7+B2

=B3*1.65*B11*SQRT(B9)(右にコピー)


3892821

すべての地点に安全在庫を配置(保証リード時間=0)


3892821

木ネットワークモデルの最適解

11(=9+3-1)日分

の在庫

4日

6日以下

4

(3日)

6

(3日)

1

(6日)

0日

9日

需要=100

6日

3

(3日)

5

(3日)

3(=1+3-1)

日分の在庫

1日

9日

6日

4日以下

2

(2日)

1日

7

(3日)

需要=100


3892821

在庫シミュレーション(各在庫地点における日々の在庫管理方策)

=INT(1.65*3*SQRT(4))+1

=INT(NORMINV(RAND(),10,3))

=E6+F6

=C3+C4+C5+C6

=B6

=C2

=E5-B6+D6


3892821

ペケトン社の例(遅延差別化と押し出しと引っ張りの境界)

3円

2円

在庫保管費用

=1円

需要 N(1,1)

平均1,標準偏差1

の正規分布

生産時間=1日


3892821

練習問題5-2

  • ペケトン社の例において,保証リード時間を変化させたときの在庫費用を計算するためのExcelファイルを作成せよ.

  • 保証リード時間を色々と変えることによって(What If分析によって)良好な解(総在庫費用を小さくするような各在庫地点の保証リード時間)を求めよ.


3892821

ペケトン社の例(遅延差別化)

工程の順序を変えることによって

在庫が低減->遅延差別化

(delayed differentiation, postponement)

3円

在庫保管費用

=1円

需要 N(1,1)

2円


3892821

練習問題5-3

  • 遅延差別化を適用した後のペケトン社の例において,保証リード時間を変化させたときの在庫費用を計算するためのExcelファイルを作成せよ.

  • 保証リード時間を色々と変えることによって(What If分析によって)良好な解(総在庫費用を小さくするような各在庫地点の保証リード時間)を求めよ.

  • 顧客に対する保証リード時間を1日から0日に変化させた場合を考えよ.


3892821

押し出しと引っ張りの境界

保証リード時間

=1日

染め工程

トレーナー

製造

布調達

押し出し型(push)生産

押し出しと引っ張りの境界

デカップリング地点

保証リード時間

=0日

染め工程

トレーナー

製造

布調達

注文を確認後に染め工程開始

トレーナーの在庫を2日分にするための見込み生産

引っ張り型(pull)生産

押し出し型(push)生産


3892821

遅延差別化の方法

  • ロジスティクスのための設計(design for logistics)部品の共通化モジュール化標準化

  • 作業工程の遅延化

  • 作業工程の入れ替え


  • Login