Collisions cosmic accelerators
Download
1 / 91

Collisions: Cosmic Accelerators - PowerPoint PPT Presentation


  • 309 Views
  • Updated On :

Collisions: Cosmic Accelerators the sky > 10 GeV photon energy < 10 -14 cm wavelength > 10 8 TeV particles exist they should not more/better data arrays of air Cherenkov telescopes 10 4 km 2 air shower arrays ~ km 3 neutrino detectors f.halzen Energy (eV ) 1 TeV Radio

Related searches for Collisions: Cosmic Accelerators

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Collisions: Cosmic Accelerators ' - libitha


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Collisions cosmic accelerators l.jpg

Collisions: Cosmic Accelerators

the sky > 10 GeV photon energy

< 10-14 cm wavelength

> 108 TeV particles exist

they should not

more/better data

arrays of air Cherenkov telescopes

104 km2 air shower arrays

~ km3 neutrino detectors

f.halzen


Slide2 l.jpg

Energy (eV)

1 TeV

Radio

CMB

Visibe

GeV g-rays

Flux


Slide3 l.jpg

n

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

TeV sources!

cosmic

rays


G g e e l.jpg

With103 TeV energy, photons do not

reach us from the edge of our galaxy

because of their small mean free path

in the microwave background.

g + g e++ e-


Cosmic ray spectrum l.jpg
Cosmic Ray spectrum

Extragalactic flux

sets scale for many

Accelerator models

Atmospheric

neutrinos


Telescope earth s atmosphere l.jpg
Telescope = Earth’s Atmosphere

  • Electron/photon shower

  • Muon component

  • Cerenkov radiation

  • Nitrogen fluorescence

  • Neutrinos

Particle initiates electromagnetic + hadronic cascade detected by:


Slide9 l.jpg

fluorescence from atmospheric nitrogen

+

_

cosmic ray

+

_

o



fluorescent light

electromagnetic

shower


Slide14 l.jpg

Acceleration to 1021eV?

~102 Joules

~ 0.01 MGUT

  • dense regions with exceptional

  • gravitational force creating relativistic

  • flows of charged particles, e.g.

    • annihilating black holes/neutron stars

    • dense cores of exploding stars

    • supermassive black holes


Slide15 l.jpg

Cosmic Accelerators

E ~ GcBR

R ~ GM/c2

magnetic field

energy

E ~GBM

mass

boost factor


E g b m l.jpg

E > 1019 eV ?

E ~ GB M

>

~

quasars G@ 1 B @ 103G M @109 Msun

blasars 10

neutron stars G@ 1 B @ 1012G M @ Msun

black holes

.

.

grb  102

>

~

emit highest energy g’s!


Slide17 l.jpg

Supernova shocks

expanding in

interstellar medium

Crab nebula


Active galaxies jets l.jpg
Active Galaxies: Jets

20 TeV gamma rays

Higher energies obscured by IR light

VLA image of Cygnus A


Profile of gamma ray bursts l.jpg
Profile of Gamma Ray Bursts

  • Total energy: one solar mass

  • Photon energy: 0.1 MeV to TeV

  • Duration: 0.1 secs -- 20 min

  • Several per day

  • Brightest object in the sky

  • Complicated temporal structure:

    no ‘typical’ burst profile


Slide21 l.jpg

Gamma

Ray

Burst


Two puzzles or one l.jpg
Two Puzzles or One?

  • Gamma ray bursts

  • Source of the highest energy cosmic rays


Particles 10 20 ev l.jpg
Particles > 1020 eV ?

  • not protons

  • cannot reach us from cosmic accelerators

  • lint < 50 Mpc

  • no diffusion in magnetic fields

  • doublets, triplet

  • not photons

  • g + Bearth e+ + e- not seen

  • showers not muon-poor

  • not neutrinos

  • snp 10-5sppno air showers


Interaction length of protons in microwave background p g cmb p l.jpg
Interaction length of protons in microwave backgroundp + gCMBp + ….

lgp = (nCMBs  ) -1

@10 Mpc

p+gCMB

GZK cutoff


Forthcoming agasa results l.jpg
Forthcoming AGASA Results

  • The highest energy cosmic rays do come from point sources: 5 sigma correlation between directions of pairs of particles. Birth of proton astronomy!

  • Are the highest energy cosmic rays Fe?

    GKZ cutoff at ~2 1020 eV ?


Particles 10 20 ev27 l.jpg
Particles > 1020 eV ?

new

astrophysics?

  • not protons

  • cannot reach us from cosmic accelerators

  • lint < 50 Mpc

  • no diffusion in magnetic fields

  • doublets, triplet

  • not photons

  • g+ Bearth e+ + e- not seen

  • showers not muon-poor

  • not neutrinos

  • snp 10-5spp no air showers

trouble for top-down

scenarios

[email protected] with

TeV - gravity unitarity?


10 24 ev 10 15 gev m gut l.jpg

_

1024 eV = 1015 GeV ~ MGUT

are cosmic rays the decay product of

  • topological defects

  • (vibrating string, annihilating monopoles)

  • heavy relics?

Top. Def.  X,Y  W,Z  quark + leptons

 >> p

  g

  • top-down spectrum

  • hierarchy n gp


The oldest problem in astronomy l.jpg
The Oldest Problem in Astronomy:

  • No accelerator

  • No particle candidate (worse than dark matter!)

  • Not photons (excludes extravagant particle physics ideas)

What Now?


Slide30 l.jpg

black hole

radiation

enveloping

black hole


Slide33 l.jpg

cosmic ray puzzle

neutrinos

protons

TeV g - rays

~ 1 km3

high energy

detectors

~ 104 km2

air shower

arrays

  • atmospheric Cherenkov

  • space-based

  • AMANDA / Ice Cube

  • Antares, Nestor,

  • NEMO

  • Veritas, Hess, Magic …

  • GLAST…

  • Hi Res, Auger,

  • Airwatch,

  • OWL, TA…

e.g.

  • particle physics

  • and cosmology

  • dark matter search

  • discovery

  • short-wavelength

  • study of supernova

  • remnants and galaxies

also


Slide34 l.jpg

Array

=> Very large effective area (105 m2)

=> 3-dim shower reconstruction

=> Dramatic improvements in

- Energy Resolution

- Background Rejection


Slide35 l.jpg

STACEE

Solar Tower Atmospheric Cherenkov Effect Experiment

Gamma-ray Astrophysics between 50-500 GeV


Slide38 l.jpg

  • The muon radiates blue light in its wake

  • Optical sensors capture (and map) the light


Another example velocity muon velocity light l.jpg
Another example: the neutrino interacts with an ice nucleusvelocity muon > velocity light


Optical cherenkov neutrino telescope projects l.jpg
Optical Cherenkov the neutrino interacts with an ice nucleusNeutrino Telescope Projects

ANTARES

La-Seyne-sur-Mer, France

BAIKAL

Russia

NEMO

Catania, Italy

DUMAND

Hawaii

(cancelled 1995)

NESTOR

Pylos, Greece

AMANDA, South Pole, Antarctica


Antares site l.jpg

40Km SE Toulon the neutrino interacts with an ice nucleus

Depth 2400m

Shore Base

La Seyne-sur-Mer

ANTARES SITE

40 km

Submarine cable

-2400m


Atmospheric muons and neutrinos l.jpg
Atmospheric Muons and Neutrinos the neutrino interacts with an ice nucleus


Online 2001 analysis l.jpg
...online 2001 analysis the neutrino interacts with an ice nucleus

2 recent events:

October 7, 2001

October 10, 2001


Online 2001 analysis73 l.jpg
...online 2001 analysis the neutrino interacts with an ice nucleus

Zenith angle comparison with signal MC

 real-time filtering at Pole

 real-time processing (Mainz)

Left plot:

 20 days (Sept/Oct 2001)

 90 candidates above 100°

atmospheric muons

atmospheric ‘s

4.5 candidates / day

(data/MC normalized above 100°)


Icecube l.jpg

IceTop the neutrino interacts with an ice nucleus

AMANDA

South Pole

Skiway

1400 m

2400 m

IceCube

  • 80 Strings

  • 4800 PMT

  • Instrumented volume: 1 km3 (1 Gt)

  • IceCube is designed to detect neutrinos of all flavors at energies from 107 eV (SN) to 1020 eV


South pole l.jpg
South Pole the neutrino interacts with an ice nucleus


South pole77 l.jpg
South Pole the neutrino interacts with an ice nucleus

Dark sector

Skiway

AMANDA

Dome

IceCube

Planned Location 1 km east


South pole78 l.jpg
South Pole the neutrino interacts with an ice nucleus

Dark sector

Skiway

AMANDA

Dome

IceCube


The icecube collaboration l.jpg
The IceCube Collaboration the neutrino interacts with an ice nucleus

Institutions: 11 US and 9 European institutions

(most of them are also AMANDA member institutions)

  • Bartol Research Institute, University of Delaware

  • BUGH Wuppertal, Germany

  • Universite Libre de Bruxelles, Brussels, Belgium

  • CTSPS, Clark-Atlanta University, Atlanta USA

  • DESY-Zeuthen, Zeuthen, Germany

  • Institute for Advanced Study, Princeton, USA

  • Dept. of Technology, Kalmar University, Kalmar, Sweden

  • Lawrence Berkeley National Laboratory, Berkeley, USA

  • Department of Physics, Southern University and A\&M College, Baton Rouge, LA, USA

  • Dept. of Physics, UC Berkeley, USA

  • Institute of Physics, University of Mainz, Mainz, Germany

  • Dept. of Physics, University of Maryland, USA

  • University of Mons-Hainaut, Mons, Belgium

  • Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA

  • Dept. of Astronomy, Dept. of Physics, SSEC, PSL, University of Wisconsin, Madison, USA

  • Physics Department, University of Wisconsin, River Falls, USA

  • Division of High Energy Physics, Uppsala University, Uppsala, Sweden

  • Fysikum, Stockholm University, Stockholm, Sweden

  • University of Alabama, Tuscaloosa, USA

  • Vrije Universiteit Brussel, Brussel, Belgium


Event in icecube l.jpg
µ-event in IceCube the neutrino interacts with an ice nucleus

AMANDA-II

Low Noise:

≈ 2 photoelectrons /

(5000 PMT x µsec)

1 km


Slide82 l.jpg

Muon events the neutrino interacts with an ice nucleus

Eµ=6 PeV

Eµ=10 TeV

Measure energy by counting the number of fired PMT.

(This is a very simple but robust method)


Slide83 l.jpg

n the neutrino interacts with an ice nucleuse+ e W m+ nm

6400 TeV


Slide85 l.jpg

n the neutrino interacts with an ice nucleust t

PeVt(300m)

t decays


Slide86 l.jpg

Why is Searching for the neutrino interacts with an ice nucleusn’s from GRBs

of Interest?

  • Search for vacuum oscillations (nnt):

  • Dm2  10-17 eV2

  • Test weak equivalence principle:10-6

  • Test : 10-16

>

~

Cphoton - Cn

Cn


Slide87 l.jpg

Summary the neutrino interacts with an ice nucleus

the sky > 10 GeV photon energy

< 10-14 cm wavelength

> 108 TeV particles exist

Fly’s Eye/Hires

they should not

more/better data

arrays of air Cherenkov telescopes

104 km2 air shower arrays

~ km3 neutrino detectors


Slide88 l.jpg

n the neutrino interacts with an ice nucleus

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

TeV sources!

cosmic

rays


A few more results l.jpg
A few more results … the neutrino interacts with an ice nucleus

  • Gamma Ray Bursts (GRBs)

    • Observation of single 3 s excess (GRB 970417a) within 1997 BATSE trigger.

  • Flux limit for unidentified TeV point sources

    • For E spectrum

Flux (>1 TeV) < 2 – 30 x 10-7 cm-2 s-1 @90%

AMANDA II will probe this flux for

n/g = 1

However, g spectrum probably softer due to

reprocessing (core) and absorption in photon BG


ad