Towards semantic web mining
Download
1 / 30

Towards Semantic Web Mining - PowerPoint PPT Presentation


  • 310 Views
  • Updated On :

Towards Semantic Web Mining. Bettina Berndt Andreas Hotho Gerd Stumme. Semantic Web Mining. Combination of Semantic Web and Web Mining Improve Web Mining using Semantic Web Improve Semantic Web using Web Mining. Overview. Web Mining Extracting Semantics from the Web

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Towards Semantic Web Mining' - liam


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Towards semantic web mining l.jpg

Towards Semantic Web Mining

Bettina Berndt

Andreas Hotho

Gerd Stumme


Semantic web mining l.jpg
Semantic Web Mining

  • Combination of Semantic Web and Web Mining

  • Improve Web Mining using Semantic Web

  • Improve Semantic Web using Web Mining


Overview l.jpg
Overview

  • Web Mining

  • Extracting Semantics from the Web

  • Exploiting Semantics for Web Mining

  • Mining the Semantic Web

  • Closing the Loop

  • Conclusion/Assessment


Web mining l.jpg
Web Mining

  • Discovers Local and Global Structure

  • Structured Data

  • Goals

    • Improvement of site design

    • Generate dynamic recommendations

    • Improve marketing

  • Main Areas

    • Web Content Mining

    • Web Structure Mining

    • Web Usage Mining


Content mining l.jpg
Content Mining

  • Type of Text Mining

  • Uses Tags

  • Detect co-occurrences

  • Event detection

  • Reconstruction of page content

  • Relations in a domain


Web structure mining l.jpg
Web Structure Mining

  • WebPages as a whole

    • Uses hyperlinks

    • Identify relevance

  • Single Pages

    • Five types of Web Pages

      • Head Pages

      • Navigation Pages

      • Content Pages

      • Look up Pages

      • Personal Pages


Web usage mining l.jpg
Web Usage Mining

  • Request by Visitors

  • Additional Structure

  • Unintended Relationships



Disadvantages of web mining l.jpg
Disadvantages of Web Mining

  • Content/Structure

    • False positives

    • Unused

    • Human understandable

    • Large amount of data

  • Usage

    • Usage tracked by urls

    • General concepts

    • Multiplicity of events and urls


Slide10 l.jpg

TOP

NAME

PERSON

PERSON

TITLE

PROJECT

COOPERATES

COOPERATES

--

--

WITH

WITH

Ontology

WORKS-IN

RESEARCHER

RESEARCHER

Semantic Web Mining

Andreas Hotho

WORKS-IN

DAMLPROJ

URI-SWMining

-

Relational

Metadata

URI-AHO

WORKS-IN

COOPERATES

COOPERATES

-

-

WITH

WITH

URI-GST

WWW


Outline l.jpg
Outline

  • Web Mining

  • Extracting Semantics from the Web

  • Exploiting Semantics for Web Mining

  • Mining the Semantic Web

  • Closing the Loop

  • Conclusion/Assessment


Extracting semantics l.jpg
Extracting Semantics

  • Ontology Learning

    • Learn structures of Ontologies

  • Instance Learning

    • Populates the Ontologies


Extracting semantics13 l.jpg
Extracting Semantics

  • Ontology Learning

    • Semi-automatic approach

    • Merging

      • FCA-Merge

      • TITANIC

  • Instance Learning

    • Information Extraction


Outline14 l.jpg
Outline

  • Web Mining

  • Extracting Semantics from the Web

  • Exploiting Semantics for Web Mining

  • Mining the Semantic Web

  • Closing the Loop

  • Conclusion/Assessment



Web content structure mining l.jpg
Web Content/Structure Mining

  • Content Mining

    • Preprocess the input data

    • Apply heuristics

    • Creates a cluster

  • Web Structure Mining

    • Page Rank

    • Keyword Analysis

    • CLEVER


Slide17 l.jpg

Conceptual Clustering of Emails (and Bookmarks)

using IE and Formal Concept Analysis for supporting navigation and retrieval.


Web usage mining18 l.jpg
Web Usage Mining

  • Goal

    • Better understand user’s tendencies

  • Problem

    • Dynamic pages

    • How to take advantage of this?

      • Generate queries

      • Create usage paths

      • Classification scheme


Advantages l.jpg
Advantages

  • Structured Model

  • Improve queries

    • Analyze single pages

    • Analyze ontologies

    • Users history


Outline20 l.jpg
Outline

  • Web Mining

  • Extracting Semantics from the Web

  • Exploiting Semantics for Web Mining

  • Mining the Semantic Web

  • Closing the Loop

  • Conclusion/Assessment


Slide21 l.jpg

How can web mining help

build the semantic web?


Semantic web structure mining l.jpg
Semantic Web/Structure Mining

  • Intertwined

  • Relational Data Mining

    • Looks for patterns

    • Classification, regression, clustering and associations

    • Challenges

      • Scalability

      • Distributed


Semantic web usage mining l.jpg
Semantic Web Usage Mining

  • Goal

    • Requested page = ontology entity

    • Log files

  • Advantages

    • Understand search strategies

    • Improve navigation design

    • Personalize


Outline24 l.jpg
Outline

  • Web Mining

  • Extracting Semantics from the Web

  • Exploiting Semantics for Web Mining

  • Mining the Semantic Web

  • Closing the Loop

  • Conclusion/Assessment


Mining to learn ontologies l.jpg
Mining to Learn Ontologies

  • Establish a concept hierarchy

    • OntEx

  • Determine Association rules

    • Discover combinations of concepts





Conclusion assesment l.jpg
Conclusion/Assesment

  • Semantic Structures in the Web can help Web mining

  • Web Mining can build the Semantic Web

  • Combine the two together

  • Different Idea

  • Combination of Products



ad