Mathematics Appreciation
This presentation is the property of its rightful owner.
Sponsored Links
1 / 264

数学欣赏 PowerPoint PPT Presentation


  • 37 Views
  • Uploaded on
  • Presentation posted in: General

Mathematics Appreciation. 数学欣赏. 主讲:张文俊. 第五章 数学之奇. 自言自语. 数学中不少结论由于其巧妙无比而令人赞叹,正是因为这一点,数学才有无穷的魅力。. 第一节 实数系统. [email protected] 实数集. 有理数集. 实数系统. In This Section. 一家人. 数系扩 充概述. 连续统 假设. Hilbert 的旅馆. 德国著名数学家大卫 • 希尔伯特曾经讲过一个精彩故事。在那里,希尔伯特成为一个旅馆的老板,这个旅馆不同于我们现实生活中的任何旅馆,它设有无穷多个房间。

Download Presentation

数学欣赏

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


5945161

Mathematics Appreciation


5945161


5945161


Zwj@szu edu cn

[email protected]


5945161

In This Section

[email protected]


5945161

Hilbert


5945161

1


5945161

1.


5945161

1.


5945161

1.

(560480


5945161

1.

4


5945161

1.

  • 250

250


5945161

2.


5945161

2.

  • 1484Chuquet,1445--1500 4x23x

    x3/2(9/4-4)


5945161

2.

(Cardano,1501--1576)


5945161

2.

15451040


5945161

2.

1637 (imaginary)

(R.Descartes,1596--1661)


5945161

2.

1777i (-1)

(L.Euler,1707~1783)


5945161

2.

1748

eix cosx + i sinx


5945161

2.

17991831(a,b) a+bi

(Carl Friedrich Gauss17771855)


5945161

y

O

x

2.

(a,b) ~a+bi

b

a


5945161

2.

  • 18

  • 19


5945161

2.

1873(1833~1902)Bangbeili1530~1590


5945161

3


5945161

3.

1843

Hamilton, William Rowan, 18051865


5945161

3.

1847

(Cayley,Arthur. 1821-1895)


5945161

N Z

Q R

C

4


5945161

4.


5945161

4.

  • 0


5945161

1


5945161

5.

  • 11/231/2

  • e


5945161

6


5945161

6.


5945161

20

.

6.


5945161

6.


5945161

6.


5945161

6.


5945161

2


5945161

1.

2.


5945161

2.


5945161

x

1

1

0

2.

3.


5945161

3.

  • 1874


Georg cantor 1845 1918

Georg Cantor; 18451918

  • 1845

  • 11 1867 1872

  • 1874


5945161

12345678

246810121416


5945161

12345678

1222324252627282


5945161


5945161

y

5

4

3

2

1

x

1

2

3

4

5

1(1 , 1)

2 (2 , 1)

3 (1 , 2)

4 (3 , 1)

5 (2 , 2)

6 (1 , 3)

=


5945161

123456

(1 , 1)(2 , 1)(1 , 2)(3 , 1)(2 , 2)(1 , 3)

= =


5945161

4. 0


5945161

4. 0

0


5945161

4. 0


5945161

4. 0

So small!

0!


5945161

0


5945161


5945161

3


5945161

1.


5945161

1.

19

G. Cantor, 1845---1918

(J. W. R. Dedekind, 18311916)

K. W. T. Weierstrass, 18151897


Georg cantor 1845 19181

Georg Cantor; 18451918

  • 1845

  • 11 1867 1872

  • 1874


K w t weierstrass

K.W.T., Weierstrass

  • K.T.W Weierstrass (18151897)

  • 18541856


R dedekind richard 1916

R. (Dedekind, Richard __1916 )

  • R. (Dedekind, Richard) 183110 6

  • 1916 212

2.


5945161

2.

3.


5945161

3.

  • 1

  • Cauchy;

  • .


5945161

3.

2

4.


5945161

4.

  • 1-1


5945161

(0,1)


5945161

01

01


5945161


5945161

4


5945161

1.


5945161

1.

  • 00.

  • 0

2.


5945161

2.

0

  • 0 +n = 0

  • 0 +0 = 0 n0= 0

  • 00= 0 (0)n = 0


5945161

2.


5945161

2.

3.


5945161

3.

  • 0


5945161

n(0)n = 0

00 = 0

n0

0

4


5945161

4.

  • 1

  • 1 > 0


5945161

()

()


5945161

  • 0

  • 1

  • 0

  • 1

5.


5945161

5.

1

  • 1 +n +0 = 1

  • 1 + 1 = 1 n1= 1

  • 01= 1 (1)n = 1

6.


5945161

6.

  • 1

  • 1851

  • L=1/10n!=0.11000100000,

  • 1126241207205040


5945161

6.

  • e

  • eHermit1873, Lindemann1882.


5945161

5


5945161

01

1.


5945161

1.

MMM P(M) 2M.

M= , P(M)={ }

M={1}, P(M)={,M}

M={1,2}, P(M)={,{1},{2},M}

M={1,2,3},

P(M)={,{1},{2},{3},{1,2},{1,3},{2,3},M}


5945161

1.

M=, P(M)={} |M|= 0, |P(M)| = 1

M={1}, P(M)={,M} |M|= 1, |P(M)| = 2

M={1,2}, P(M)={,{1},{2},M}

|M|= 2, |P(M)| = 4

M={1,2,3},

P(M)={,{1},{2},{3},{1,2},{1,3},{2,3},M}

|M|= 3, |P(M)| = 8


5945161

1.

M

|P(M)| = 2|M|

2. Cantor


2 cantor

2. Cantor

CantorM

|P(M)|= 2|M| > |M|

P(M) M

3. 1


5945161

3. 1

  • 1= 2 0

    - + (0, 1) {01}N

    ak/2k, ak=0,1

4.


5945161

4.

0

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

1/2 , 1/3 , 1/4 , 2/3 , 3/2 , 1/5 , 1/6 , 2/5 , 3/4 , 4/3 , 5/2 ,

22/7 , 113/355 , 52163/16604 , 17/12 ,


5945161

4.

1

=20


5945161

4.

2

=21


5945161

4.

3= 22

Je le vois, mais je ne le crois pas.

Cantor


5945161

6


5945161

0 < 101

1878Cantor

01


5945161

190023Cantor


5945161

Kurt Gdel; 1906 1978

1938


5945161

Paul Joseph Cohen; 1934__ ,

1963


5945161

100

Cantor

01?

GodelCohen:


Zwj@szu edu cn1

[email protected]


5945161

God must be a geometer

Galileo


5945161


5945161

1


5945161


5945161


5945161


5945161

(1)

(2)


5945161

( ) (Thales of Miletus)} 625 547


5945161

(Pythagoras) 560 480


5945161

Euclid, 330---275


5945161

(3) (Descartes) (Fermat)


5945161

P. de (Fermat, Pierre de) 1601 8 20 --- - (Beaumont-de-Lomagne) 1665 1 12 (Castres)


5945161

(Descartes, Ren'e) 1596 3 31 (Touraine) (La Haye) (-- ) 1650 2 11


5945161

4 (orthogonal invariance) (coordinate-free analytical geometry) Hamilton Grassmann 3-


5945161

(HamiltonWilliam Rowan)1805 8 4 1865 9 2 (Dublin)


5945161

H.G. (GrassmannHermann Gunter)

1809 4 15 ( )1877 926


5945161

2


5945161


5945161


5945161


5945161

600

,

500

400

300

200


5945161

400

800

1200

1600


5945161

(Element)1482


5945161

151234657891011---15

  • 15621633Matteo Ricci 1552---161016076

  • (18111882)(A. Wylie, 18151887)18579


5945161

  • (Matteo Ricci; 1552 1610)

  • 1606 6


5945161

  • 1562 1633

  • 41 6

  • 1606 6


5945161

20


5945161


5945161

2355465


5945161

1.

2. a=c, b=c, a=b

3.


5945161

4.


5945161


5945161

1.

2.

3.

4.

5.


5945161

1.


5945161

2.


5945161

3.


5945161

P

R

ADC = PSQ

S

Q

4.

A

B

C

D


5945161

5.

1

a

b

a + b < 180

2


5945161


5945161

3


5945161

2200


5945161

4


5945161

  • 9


5945161

  • 180


5945161


5945161

19Gauss, C. F., 1777--1855ye . .1793---1856G. B. Riemann,1826--1866


5945161

  • ;

  • ;

  • 19


5945161

Gauss, C. F., 1777--1855


5945161

  • 1792

  • 1794

  • 1799

  • 1824


5945161

180


5945161


5945161

John Bolyai, 1802--18601832


5945161

(Bolyai Janos) 1802 1215 (Kolozsvar)()1860 1 17 ()


5945161

  • (Bolyai F) F. Bolyai

    1775-1856


5945161

1793---185618151823


5945161

(Lobachevskii , Nikolai Ivanovich) 1792 12 1 ( 11 20 ) ()1856 2 14


5945161

1826211

  • 1826211


5945161


5945161


5945161


5945161

1854Geord Bernhard Riemann,1826--1866


5945161


5945161


5945161

1868


5945161


5945161

(RiemannGeorg Friedrich Bernhard)1826 9 17 (Breselenz)1866 7 20 (Selasca)


5945161


5945161


5945161

4


5945161


5945161


5945161


5945161


5945161

Poncelet, 17881867S


5945161

J.-V. (PonceletJean--Victor)1788 7 1 (Metz)1867 1222


5945161

1868Beltrami, 18351899

(y)[tractrix]


5945161


5945161

(BeltramiEugenio) 18351116 (Cremona)1899 6 4


5945161

Jules Herni Poincar; 1854 1912l1 l2 180


5945161

P

l1

l2


5945161

(PoincareJules Henri)18544 29 (Nancy)1912 7 17


5945161

1870Klein, 18491925


5945161


5945161


5945161

5


5945161


5945161


5945161


5945161

6


5945161

:

1.


5945161

  • 1899

  • :;

  • :;

  • :


5945161


5945161

2.

__2030,


5945161

(Shapley)

1

2

3


5945161

3.


5945161

4.

Poincare, Minkouski, Hilbert


5945161


Zwj@szu edu cn2

[email protected]


5945161


5945161

1


5945161


5945161

5510


5945161

23 9919915


5945161


5945161

1.


5945161

15


5945161

4

9

2

3

5

7

8

1

6


5945161

n2nnn


5945161

1n2n


5945161

2.


5945161


5945161

44812;

61014


5945161

:


5945161

2

1275310

105125


5945161


5945161

  • 31

  • 4880

  • 5275305224

  • 7363916800

  • 810


5945161

2


5945161

3


5945161

1.

12753103


5945161

1

9

4

9

2

4

4

2

2

3

5

7

3

7

5

5

7

3

8

1

6

8

8

6

6

1

9

5795


5945161

1

6

2

11

7

3

16

12

8

4

21

17

13

9

5

22

18

14

10

23

19

15

24

20

25

25


5945161

25

24

20

11

7

3

4

12

8

16

5

17

13

9

21

10

18

14

22

23

19

15

6

2

1


5945161

25

24

20

11

24

7

20

3

4

4

12

25

8

16

16

5

17

5

13

21

9

21

10

10

18

1

14

22

22

23

6

19

2

15

6

2

1


5945161

11

24

7

20

3

4

12

25

8

16

17

5

13

21

9

10

18

1

14

22

23

6

19

2

15


5945161

2. De La Loubre

2n+12n+11


5945161

kk+1

24

61116


5945161

17

24

1

8

15

23

5

7

14

16

13

4

6

20

22

10

12

19

21

3

11

18

2

9

25


5945161


5945161

3. (Hire)


5945161

n p = 12nn(p-1)

103810320540

n4


5945161

1

1

3

2

4

4

4

2

2

3

3

1

4

2

2

3

3

1

1

1

3

2

4

4

11nn,A

2A1n,10,B

A

B


5945161

0

1

4

12

4

12

1

0

8

3

2

4

2

4

3

8

4

2

3

8

3

8

2

4

4

12

1

0

1

0

4

12

3BCC

4CD

C

D


5945161

1

1

0

3

15

12

2

14

12

4

4

0

12

4

8

2

6

4

3

4

7

1

9

8

4

4

8

2

8

10

3

11

8

1

5

4

12

13

1

3

0

3

2

2

0

4

12

16

5BDnE

E


5945161

4.


5945161

np=12n2n2 + 1 p.

1163148164560, 1055

8


5945161

1n2n2


5945161

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64


5945161

n


5945161

64

2

3

61

60

6

7

57

9

55

54

12

13

51

50

16

17

47

46

20

21

43

42

24

40

26

27

37

36

30

31

33

32

34

35

29

28

38

39

25

41

23

22

44

45

19

18

48

49

15

14

52

53

11

10

56

8

58

59

5

4

62

63

1


5945161


5945161

3


5945161

16

3

2

13

5

10

11

8

9

6

7

12

4

15

14

1

1. Albrecht Drer

1514Albrecht Durer4


5945161

16

3

2

13

5

10

11

8

9

6

7

12

4

15

14

1

134


5945161

16

3

2

13

5

10

11

8

9

6

7

12

4

15

14

1

268748


5945161

16

3

2

13

5

10

11

8

9

6

7

12

4

15

14

1

39248


5945161

16

3

2

13

5

10

11

8

9

6

7

12

4

15

14

1

415141514


5945161

2.

170617908


5945161

52

61

4

13

20

29

36

45

14

3

62

51

46

35

30

19

53

60

5

12

21

28

37

44

11

6

59

54

43

38

27

22

55

58

7

10

23

26

39

42

9

8

57

56

41

40

25

24

50

63

2

15

18

31

34

47

16

1

64

49

48

33

32

17


5945161

52

61

4

13

20

29

36

45

14

3

62

51

46

35

30

19

53

60

5

12

21

28

37

44

11

6

59

54

43

38

27

22

55

58

7

10

23

26

39

42

9

8

57

56

41

40

25

24

50

63

2

15

18

31

34

47

16

1

64

49

48

33

32

17

1260130

2260


5945161

52

61

4

13

20

29

36

45

14

3

62

51

46

35

30

19

53

60

5

12

21

28

37

44

11

6

59

54

43

38

27

22

55

58

7

10

23

26

39

42

9

8

57

56

41

40

25

24

50

63

2

15

18

31

34

47

16

1

64

49

48

33

32

17

38


5945161

3.

8


5945161

1

35

24

54

43

9

62

32

6

40

19

49

48

14

57

27

47

13

58

28

5

39

20

50

44

10

61

31

2

36

23

53

22

56

3

33

64

30

41

11

17

75

8

38

59

25

46

16

60

26

45

15

18

52

7

37

63

29

42

12

21

55

4

34


5945161


5945161

4.


5945161

31

76

13

36

81

18

29

24

11

22

40

58

27

45

63

20

38

56

67

4

49

72

9

54

65

2

47

30

75

12

32

77

14

34

79

16

21

39

57

23

41

59

25

43

61

66

3

48

68

5

50

70

7

52

35

80

17

28

73

10

33

78

15

76

44

62

19

37

55

24

42

60

71

8

53

64

1

46

69

6

51


5945161

14182=92+1

299


5945161

120

4

9

135

2

114

117

3

5

123

7

129

8

132

1

111

6

126

393331111353


5945161

15

10

3

6

4

5

16

9

14

11

2

7

1

8

13

12

5.

Francis L. Miksa53600


5945161

6.

2601118020200


5945161

5

31

35

60

57

34

8

30

19

9

53

46

47

56

18

12

16

22

42

39

52

61

27

1

63

37

25

24

3

14

44

50

26

4

64

49

38

43

13

23

41

51

15

2

21

28

62

40

54

48

20

11

10

17

55

45

36

58

6

29

32

7

33

59


5945161

7.

8402058068231856000


5945161

46

81

117

102

15

76

200

203

19

60

232

175

54

69

153

78

216

161

17

52

171

90

58

75

135

114

50

87

184

189

13

68

150

261

45

38

91

136

92

27

119

104

108

23

174

225

57

30

116

25

133

120

51

26

162

207

39

34

138

243

100

29

105

152


5945161

8.

nn19103

n=3338


5945161

3

18

11

9

15

14

17

1

13

8

6

4

10

7

3

5

12

16

2

19


5945161

Thank You !


  • Login