1 / 53

Special Topic

Special Topic. Sulfur Going beyond the bad smell …. Gaëlle Mingat. 10/10/12. Sulfur , going beyond the bad smell … Overview. General properties Some name reactions involving sulfur Sulfur ylides and the Corey- Chaykovsky reaction Chiral sulfur

leann
Download Presentation

Special Topic

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SpecialTopic Sulfur Goingbeyond the badsmell… Gaëlle Mingat 10/10/12

  2. Sulfur, goingbeyond the badsmell… Overview General properties Somenamereactionsinvolvingsulfur Sulfurylides and the Corey-Chaykovskyreaction Chiral sulfur Sulfur migration in organicsynthesis Sulfur in the foodindustry A « badsmell » example, just one… Sulfur in perfumes 10/10/12

  3. I. General properties • abundant, multivalent non-metal • cyclicoctatomicmolecule: S8 - Found in nature as the pure element, sulfide (S2-) and sulfate (SO42-) minerals - Either an oxidant or a reducing agent Bright yellowsolid Melting point: 115.21 °C, blood-redliquid Burns with a blueflamebetterobserved in the dark

  4. I. General properties • Once extractedfromsaltdomes: Fraschprocess • → 99.5% pure meltedproduct Carryingsulfur blocks from a volcano, Indonesia • Todayproduced as a by-product by removingorganosulfur compounds fromnaturalgas and petroleum Hydrodesulfurization R-S-R + 2H2 → 2 R-H + H2S Conversion of hydrogensulfide in elementalsulfur via the Claus process 3 O2 + 2 H2S → 2 SO2 + 2 H2O SO2 + 2 H2S → 3 S + 2 H2O Stockpiles of elementalsulfurrecoveredfromhydrocarbons, Alberta, Canada World production in 2011: 69 M tones → China (9.6), US (8.8), Canada (7.1), Russia (7.1) Dibenzothiophene, a composant of crudeoil

  5. I. General properties Electronic configurations: 6C 1s2 2s2 2p2 8O 1s2 2s2 2p4 16S 1s2 2s2 2p6 3s2 3p4 O: r = 70.2 pm S: r = 104.9 pm C-O: 355-380 kJ/mol C-S: 255 kJ/mol C=O: 678 kJ/mol C=S: 377 kJ/mol Longer and weaker bond Weakerπ bond (badoverlap) Schaumann E.; Top Curr. Chem.2007, 274:1-34 (DOI 10.1007/128_2006_105)

  6. I. General properties Electronegativities → electronaffinities, ionizationpotentials, bond energies Sanderson: «compactness » of an atom’selectroncloud → Polarizability of S  C-S bond: polarization not pronounced  Ioniccharacterlessened as compared to oxygencounterparts (hydrogenbondingless important)  Aromaticity: furan (Eres = 75kJ/mol) < thiophene < benzene (Eres = 113 kJ/mol) Schaumann E.; Top Curr. Chem.2007, 274:1-34 (DOI 10.1007/128_2006_105)

  7. I. General properties Essential element for life Cysteine Methionine Glutathione : antioxydant (Cysteine/Glycine/Glutamate) Disulfide bonds : mechanicalstrength, insolubility of keratin(hair, outer skin, feathers) and pungentodorwhenburned Thioesteracetyl coenzyme A Cystine (dehydrogenatedcysteine) 7

  8. I. General properties Essential element for life Biotin (vitamin H) Penicillincore structure Thiamine (vitamin B1) Umpolungchemistry in nature « S-adenosylmethionine »: Nature’siodomethane or diazomethaneequivalent Sulfanilamide (sulfadrug) 8

  9. I. General properties Important chemicalfunctionalities Thiols: R-SH Sulfides: R-S-R Sulfoxides Sulfones Sulfonicacids Sulfinicacids Sulfenicacids Sulfimides Sulfoximides Sulfonediimides Sulfonamides (sulfadrugs) Sulfinamides Sulfenamides Thiocarbonyls: thioamides

  10. I. General properties Important chemicalfunctionalities S-nitrosothiols Thiocyanates Isothiocyanates Sulfines [R3S]+ Sulfonium, oxosulfonium ion Sulfonium, oxosulfoniumylide

  11. II. Somenamereactionsinvolvingsulfur - Lawesson’sreagent: from a ketone to a thioketone → Enones, esters, lactones, amides, lactams, quinones - Sulfur as a reducing agent → NaHSO3, Na2SO3, Na2S2O3, Na2S·9H2O, SOCl2, SO2... → Me2S in ozonolysis to preventfurtheroxidation of products(stillused??) • Oxidationreactions • → Pfitzner-Moffatt • ▫ureabyproductsdifficult to remove • → Swern • ▫betteryields, fewersideproductsthan P-M • → Corey-Kim • ▫T > -25°C allowed but Me2S (toxic + badsmell) Kürti L., Czako B.; Strategic Applications of Named Reactions in Organic Synthesis (2005)

  12. II. Somenamereactionsinvolvingsulfur • Oxidationreactions • → Davis’ oxaziridineoxidations • ▫ 2-arylsulfonyl-3-aryloxaziridines • ▫sulfides and selenides to sulfoxides and selenoxides • ▫alkenes to epoxides • ▫ amines to hydroxylamines and amine oxides • ▫organometallic compounds to alcohols and phenols • ▫mostwidespread application: oxidation of enolates to α-hydroxycarbonyl compounds (acyloins) Kürti L., Czako B.; Strategic Applications of Named Reactions in Organic Synthesis (2005)

  13. II. Somenamereactionsinvolvingsulfur • Olefinations • → Bamford Stevens • ▫aproticsolvents: Z-alkenes major / proticsolvents: mixture of E- and Z-alkenes • → Shapiro • → Corey-Winter • → Julia-Lythgoe • ▫E-alkenes major Kürti L., Czako B.; Strategic Applications of Named Reactions in Organic Synthesis (2005)

  14. II. Somenamereactionsinvolvingsulfur • Rearrangements • → Mislow-Evans • → Pummerer • → Ramberg-Bäcklund • → Stevens • ▫ 1,2-rearrangement of a sulfoniumsaltgiving a sulfide, using a strong base Kürti L., Czako B.; Strategic Applications of Named Reactions in Organic Synthesis (2005)

  15. II. Somenamereactionsinvolvingsulfur → Barton-McCombie radical deoxygenationreaction ▫ radical substitution via a thiocarbonyl → Burgess dehydrationreaction → Chugaeveliminationreaction ▫ alkenesfromalcohols via a xanthate undergoing a syn-elimination → Corey-Nicolaoumacrolactonization Kürti L., Czako B.; Strategic Applications of Named Reactions in Organic Synthesis (2005)

  16. III. Sulfurylides and the Corey-Chaykovskyreaction Schaumann E.; Top Curr. Chem.2007, 274:1-34 (DOI 10.1007/128_2006_105)

  17. III. Sulfurylides and the Corey-Chaykovskyreaction Corey-Chaykovskyreaction: JACS1965, 87 (6), 1353 Schaumann E.; Top Curr. Chem.2007, 274:1-34 (DOI 10.1007/128_2006_105)

  18. III. Sulfurylides and the Corey-Chaykovskyreaction Enantio- and diastereocontrol in sulfurylides-mediatedepoxidations: Aggarwal’swork Schaumann E.; Top Curr. Chem.2007, 274:1-34 (DOI 10.1007/128_2006_105) Aggarwal V.; Chem. Commun.2003, 2644

  19. III. Sulfurylides and the Corey-Chaykovskyreaction Examples of sulfurylidesmediatedasymmetricepoxidations Schaumann E.; Top Curr. Chem.2007, 274:1-34 (DOI 10.1007/128_2006_105) Aggarwal V.; Chem. Commun.2003, 2644

  20. III. Sulfurylides and the Corey-Chaykovskyreaction The example of stabilizedylides(additional anion-stabilizing group): trans-diastereoselectivity Cross-over experiments:  Eitheranti- or syn-sulfoniumsaltfurnishesonly the trans-epoxidecontaining the more reactivealdehyde (p-NO2C6H4) →bothsyn- and anti-betaine are formedreversibly  Trans-selectivitybecausebarrier to torsional rotation in anti-betainesmaller Aggarwal V.; Chem. Commun.2003, 2644

  21. III. Sulfurylides and the Corey-Chaykovskyreaction Semi-stabilizedylides: trans-diastereoselectivity Cross-over experiments:  Anti-betainereactedwith a more reactivealdehyde: no incorporation of thisaldehyde in the final epoxide  Withsyn-betaine: complete incorporation of the more reactivealdehyde → Anti-betaineirreversiblyformed → Syn-betainereversiblyformed Aggarwal V.; Chem. Commun.2003, 2644

  22. III. Sulfurylides and the Corey-Chaykovskyreaction Control of enantioselectivity Formation of a single diastereoisomericsulfoniumylide High level of control of ylide conformation High level of control in face selectivity of the ylide Non-reversibility of the anti-betaine formation Aggarwal V.; Chem. Commun.2003, 2644

  23. III. Sulfurylides and the Corey-Chaykovskyreaction Control of enantioselectivity: effect of proticsolvents Aggarwal If lowenantioselectivity: Proticsolvents or addition of Li cations makes the reactionlessreversible (if reversibility of betaine formation is the cause) If lowdiastereoselectivity: Aproticsolvents and avoidance of species capable of solvatingalkoxides (increase of rotation barriersoreaction more reversible – displacementequilibrium to left) Aggarwal V.; Chem. Commun.2003, 2644

  24. IV. Chiral sulfur Schaumann E.; Top Curr. Chem.2007, 274:1-34 (DOI 10.1007/128_2006_105)

  25. IV. Chiral sulfur Schaumann E.; Top Curr. Chem.2007, 274:1-34 (DOI 10.1007/128_2006_105)

  26. IV. Chiral sulfur Schaumann E.; Top Curr. Chem.2007, 274:1-34 (DOI 10.1007/128_2006_105)

  27. IV. Chiral sulfur http://www.chemtube3d.com/Oppolzer.html Schaumann E.; Top Curr. Chem.2007, 274:1-34 (DOI 10.1007/128_2006_105)

  28. IV. Chiral sulfur Schaumann E.; Top Curr. Chem.2007, 274:1-34 (DOI 10.1007/128_2006_105)

  29. V. Sulfur migration in organicsynthesis Stuart Warren’swork; preliminary observation Warren S.; Phosphorous, Sulfur and Silicon1999, 153-154, 59

  30. V. Sulfur migration in organicsynthesis D. House, S. Warren: stereospecificity in the migration of « SPh » Secondary OH = LG Primary OH = Nu Secondary OH = LG Primary OH no more a Nu Warren S.; Phosphorous, Sulfur and Silicon1999, 153-154, 59

  31. V. Sulfur migration in organicsynthesis Competitionbetween 2 hydroxyl groups Is it possible to control which OH leaves, whichacts as a Nu and whereitattacks?? Primary OH = LG SPh = Nu Primary OH = LG Secondary OH = Nu Warren S.; Phosphorous, Sulfur and Silicon1999, 153-154, 59

  32. V. Sulfur migration in organicsynthesis Kineticresolution of racemic and enolisable 2-PhSaldehydes Warren S.; Phosphorous, Sulfur and Silicon1999, 153-154, 59

  33. VI. Sulfur in the foodindustry • About 10% of the volatile components detected in foods and beveragescontainsulfur •  Volatile organicsulfur compounds: extremelylowodourthreshold • →highly important for flavours and aromas Goeke A.; Sulfur reports2002, 23, 3, 243

  34. VI. Sulfur in the foodindustry The Maillard reactions (1911) ▫ chemicalreactionsoccuringwhile cooking food ▫ aminoacids + sugarsform a brownish mixture whenheated to hightemperature ▫ responsible for manycolors and flavors in foods: - the browning of variousmeatslike steak - toastedbread, burnishedcrust of brioche, cakes, yeast, biscuits - French fries, friedonions - maltedbarley (whiskey, beer) - dried or condensedmilk (dulce de leche) - maplesyrup - roasted coffee ▫ importance for the foodindustry in order to control the aspect, the taste and the conservation of food (incorrect preparation or storageproduce off-flavours)

  35. VI. Sulfur in the foodindustry Role of cysteine and cysteine-Sconjugates as odourprecursors Maillard reaction: cysteine + sugars (meatflavour…) Roastmeat Popcorn Basmati rice  Cheddar cheese: methanethiol, hydrogensulfide, dimethyldisulfide, dimethyltrisulfide → products of the catabolism of methionine and cysteine by bacteria Starkenmann C.; FlavourFragr. J.2008, 23, 369

  36. VI. Sulfur in the foodindustry Role of cysteine and cysteine-Sconjugates as odourprecursors  Wine and passion fruit Winetreatedwithcopper sulfate → « boxtree  » and « tropical fruit » odoursdisappeared Passion fruit aroma Aroma of youngbotrytizedsweetwines Cysteinylatedprecursors to typicalaroma of Sauvignon wines Starkenmann C.; FlavourFragr. J.2008, 23, 369

  37. VI. Sulfur in the foodindustry Sulfur compounds in wine → 5 families: thiols, sulfides, polysulfides, thioesters, heterocycles → 2 categories: boiling point below or above 90 °C (volatile compounds or less) → Produced by 2 main processes:  enzymatic: degradation of sulfur-containingamino-acids fermentation metabolism of sulfur-containing pesticides  non-enzymatic: photochemical, thermal, chemicalreactionsduringwinemaking and storage → Role of SO2: antibiotic and antioxydant (« contains sulfites »; up to 10mg/L) → Reactionsmoststudied: thosecatalyzed by light and producingunpleasantflavourscalled « light tastes » or « reduced tastes » Guasch J.; J. Chromath. A2000, 881, 569

  38. VI. Sulfur in the foodindustry Guasch J.; J. Chromath. A2000, 881, 569

  39. VI. Sulfur in the foodindustry

  40. VI. Sulfur in the foodindustry

  41. VI. Sulfur in the foodindustry Sulfur compounds in wine  In general, aromatic contributions of the above compounds considereddetrimental to winequality →cabbage, garlic, onion, rubber…  Somesulfur compounds contributeactively and are typical to somewinearomas →strawberry → box tree → passion fruit →cookedleeks Guasch J.; J. Chromath. A2000, 881, 569

  42. VII. A « badsmell » example, just one… → Humansweat Sweatsecreted by axillary glands odourless: odoriferous components generated by skin bacteria A tertiary thiol… Starkenmann C.; FlavourFragr. J.2008, 23, 369

  43. VIII. Sulfur in perfumes • Sulfur-containing compounds: some of the strongest odorants • Perception of odoroftendepends on: • → chemical, diastereo- and enantio-purity • → concentration (unpleasentodorwhensmelledathigh concentration) • ▫ ability to trigger differentreceptor sites in the olfactory bulb of the nose The cassis/cat example: 4-mercapto-4-methylpentanone 29 > 0.001%: obnoxious tom-cat urine off-odor (0.4% impurity in paint) < 0.00001%: naturalcrisp cassis note (Sauvignon wines) Also « Baie rouge » scent (raspberry), box tree, broom, green tea, grapefruit Goeke A.; Sulfur reports2002, 23, 3, 243

  44. VIII. Sulfur in perfumes • Structure-odorcorrelations • Free tertiarysulfur group distant of 2-4 Å of a carbonyl  Importance of stericbulkaroundsulfur group (tertiarymercaptoketones)  Importance of H bonding 61: no fruityodor 62: less cassis-likethan63 Goeke A.; Sulfur reports2002, 23, 3, 243

  45. VIII. Sulfur in perfumes •  Importance of diastereo- and enantio- purity • Hydrolysis of thioacetates in the mucosa of the olfactory bulb responsible for cassis odor in 38? Goeke A.; Sulfur reports2002, 23, 3, 243

  46. VIII. Sulfur in perfumes Grapefruit 1982: 1-p-menthene-8-thiol shown to be an extremelypotent constituent of grapefruit juice. Alsoidentified in orange, yuzu and must.

  47. VIII. Sulfur in perfumes Passionfruit Oxane® (perfumery) 62, 63: also in white and redwines Goeke A.; Sulfur reports2002, 23, 3, 243

  48. VIII. Sulfur in perfumes Green scents Fancy « tomatoleaves » scent in the perfume « Les Belles » (Nina Ricci): complexcombination of several odorants. Essential oil of coriander, used in fine fragrances: « Gucci No. 1 », « Le Jardin d’Amour », « Coriandre » (!) Goeke A.; Sulfur reports2002, 23, 3, 243

  49. VIII. Sulfur in perfumes Scents of flowers Goeke A.; Sulfur reports2002, 23, 3, 243

  50. VIII. Sulfur in perfumes The archetypalexample: rose oil Impartnaturalness of rose scentperceivedwhensmelling rose petals to essential rose oil Goeke A.; Sulfur reports2002, 23, 3, 243

More Related