Control of a Solution Copolymerization Reactor using Piecewise Linear Models. Leyla Özkan APACT03 York, UK April 30 th , 2003. Presentation Outline. Motivation MultiModel Predictive Control Formulation Implementation on MMVA Solution Copolymerization Reactor Stability Analysis
Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.
Leyla Özkan
APACT03 York, UK
April 30th , 2003
APACT0330 April, 2003
Reduce OffSpecification Product
APACT0330 April, 2003
min Piecewise Linear Models
J
(
k
)
p
u
(
.
)
Past
Future
Set point
dx
Predicted y
=
f
(
x
,
u
,
t
)
dt
Closed loop y
Open loop u
£
£
u
u
u
min
max
£
£
y
y
y
min
max
Closed loop u
k
k+1
k+Hc
k+Hp
Hc
Hp
Model Predictive ControlAPACT0330 April, 2003
[ Piecewise Linear Models
]
¥
T
=
+
+
+
J
x
(
k
m

k
)
Q
x
u
Ru
(
k
m

k
)
å
¥
I
T
+
+
(
k
)
(
k
m

k
)
(
k
m

k
)
finite horizon cost
infinite horizon cost
m
=
0
2
å
+
+
x
(
k
m

k
)
2
n
+
+
+
+
u
u
(
(
k
k
m
m


k
k
)
)
x
(
k
m

k
)
R
Q
2
2
=
m
n+1
I
å
+
Q
R
I
=
m
0
T
+
+
+
+
x
)
)
(
k
n
1
P x
(
k
n
1
MultiModel Predictive ControlAPACT0330 April, 2003
x Piecewise Linear Models(k+1k), u(k+1k)
x(k+2k), u(k+2k)
x(kk), u(kk)
n+1 m
(x,u) = (0,0)
u(k+mk)=Kx(k+mk)
Terminal region
x(k+n+1k)
Quasiinfinite horizon strategyAPACT0330 April, 2003
t
J
J
¥
n
OP2
x2
OP1
x1
Illustration of multimodel predictivecontrolControl Recipe
If x terminal region
quasiinfinite horizon
If x terminal region
infinite horizon
APACT0330 April, 2003
g Piecewise Linear Models
min
é
ù
1
*
*
*
*
*
L
ê
ú
0
.
5
g
Q
x
(
k

k
)
I
0
0
0
0
0
I
ê
ú
0
.
5
ê
ú
g
R
u
(
k

k
)
0
I
0
0
0
0
ê
ú
0
.
5
³
+
g
0
Q
x
(
k
1

k
)
0
0
I
0
0
0
ê
ú
I
0
.
5
ê
ú
+
g
R
u
(
k
1

k
)
0
0
0
I
0
0
ê
ú
M
O
ê
ú
ê
ú
+
+
x
(
k
n
1

k
)
0
0
0
0
0
Q
ë
û
é
ù
T
0
.
5
T
0
.
5
T
+
Q
(
A
Q
B
Y
)
QE
Y
R
t
t
t
t
I
t
ê
ú
T
T
+
+
x
x
(
A
Q
B
Y
)
Q
b
b
b
e
0
0
ê
ú
t
t
t
t
t
t
t
ê
ú
T
T
³
0
x

x

E
Q
e
b
(
I
e
e
)
0
0
t
t
t
t
t
ê
ú
0
.
5
ê
ú
g
Q
Q
0
0
I
0
I
ê
ú
0
.
5
g
R
Y
0
0
0
I
ë
û
t
The resulting LMI problemFinite horizon
x(k) terminal region
Infinite horizon
APACT0330 April, 2003
g Piecewise Linear Models
min
x
Q
,
,
Y
i
s.t.
é
ù
T
1
x
(
k

k
)
³
0
ê
ú
ê
ú
x
(
k

k
)
Q
û
ë
and
é
ù
T
0
.
5
T
0
.
5
T
+
Q
(
A
Q
B
Y
)
QE
Y
R
i
i
i
i
I
i
ê
ú
T
T
+
+
x
x
(
A
Q
B
Y
)
Q
b
b
b
e
0
0
ê
ú
i
i
i
i
i
i
i
ê
ú
T
T
³
0
x

x

E
Q
e
b
(
I
e
e
)
0
0
i
i
i
i
i
ê
ú
0
.
5
ê
ú
g
Q
Q
0
0
I
0
I
ê
ú
0
.
5
g
R
Y
0
0
0
I
ë
û
i



1
1
1
=
g
x
=
l
=
P
Q
K
Y
Q
i
i
Özkan, L. et.al. , Control of a solution copolymerization reactor using multimodel predictive control, Chem. E. Science, 58:12071221, 2003
The resulting LMI problemFeasible
ONLY IF
bi=0
(x(k) terminal region)
APACT0330 April, 2003
j
=
1
,
2
,
…
,
n
£
u
(
k
)
u
u
k
0
j
j
,
max
³
Finite horizon cost:
Infinite horizon cost:
Impose directly
(
u
(
k
+
m

k
)
k
+
m

k
)
=
Kt x
+
£
Exists s.t.
X
u
(
k
m

k
)
é
ù
X
Y
j
2
t
³
£
0
X
u
ê
ú
jj
j
,
max
u
Y
Q
ë
û
j
t
,
max
m
=
0
, 1, …, n
j
j
=
=
1
1
,
,
2
2
,
,
…
…
,
,
n
n
u
u
m
=
n+1 ,…,
Input ConstraintsAPACT0330 April, 2003
Monomer (F Piecewise Linear ModelsA)
Monomer (FB)
Initiator (FI)
Coolant
Solvent (FS)
Coolant
Transfer Agent (FC)
Polymer
Solvent
Unreacted feed
Inhibitor (FZ)
Richards, J. R. et.al. , Feedforward and Feedback Control of a Solution Copolymerization Reactor, AIChE Journal, 35(6):891907, 1989
MMVA Solution Copolymerization ReactorChallenge: Optimization problem involves 200–300 variables
APACT0330 April, 2003
4
OP 2
3.8
Mw/E4 (kg/kmol)
3.6
OP 1
3.4
0
10
20
30
40
50
time (h)
Implementation on MMVA copolymerization reactorAPACT0330 April, 2003
( Piecewise Linear Modelsx,u)  (0,0)
x3
x
x(kk)
x2
x1
t
Implementation on MMVA (cont’d)APACT0330 April, 2003
Ap Piecewise Linear Models
Y
30
30
0
0
10
10
20
20
time (h)
time (h)
Implementation on MMVA (cont’d)2 models
4
353.5
3 models
353.4
3.8
T (K)
353.3
4 models
Mw/E4 (kg/kmol)
353.2
3.6
353.1
3.4
Off–spec. (kg)
0.64
27
26
0.62
Open loop 302.4
25
0.6
2 models 134.8
Gpi (kg/h)
0.58
24
3 models 110.1
23
0.56
4 models 109.8
0.54
22
APACT0330 April, 2003
Asymptotically
stable origin
V(x)
Time
Stability AnalysisAPACT0330 April, 2003
Discrete Piecewise Linear Models
components
Continuous
dynamical systems
Logic commands (switches,automata)
Hybrid systems
Hybrid systemsAPACT0330 April, 2003
Branicky, M.S., Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Trans. Automatic Control, 43(4):475482, 1998.
Multiple Lyapunov FunctionsIf Viis monotonically nonincreasing on(T) then system is stable in the sense of Lyapunov
APACT0330 April, 2003
V1(x)
t0
t1
t2
t3
t4
t5
t6
V2(x)
Multiple Lyapunov FunctionsAPACT0330 April, 2003
Theorem analysis tools for switched and hybrid systems,
Ifx(k) terminal region, the quasi–infinite horizon optimization problem is solvedincluding the contractive constraint. If x(k) terminal regionthe infinite horizon optimization problem is solved. The closed loop system is stable if the feasible solutions of the control strategy defined are implemented in a receding horizon fashion
MultiModel Predictive Control with Stability GuaranteeAPACT0330 April, 2003
terminal region
Ï
g
ì
(
k
)
x
(
k
)
=
V
í
a
(
(
x
))
T
terminal region
Î
x
(
k
)
Px
(
k
)
x
(
k
)
î
MultiModel Predictive Control with Stability GuaranteeAPACT0330 April, 2003
1 analysis tools for switched and hybrid systems,
10
0
10
(k)
xT(k)Px(k)
1
10
log (V)
2
10
3
10
4
10
0
5
10
15
t(h)
MMVA solution copolymerization revisitedAPACT0330 April, 2003
APACT0330 April, 2003
Thank you analysis tools for switched and hybrid systems,
for your attention
Leyla Özkan
APACT0330 April, 2003