1 / 19

Модель фотосистемы 2 для анализа выхода флуоресценции после действия 10 нс импульса

Модель фотосистемы 2 для анализа выхода флуоресценции после действия 10 нс импульса. Беляева 1 Н.Е , Ризниченко 1 Г.Ю, Шмитт 2 Ф-И, Пащенко 1 В.З, Рубин 1 А.Б, Ренгер 2 Г

laurel
Download Presentation

Модель фотосистемы 2 для анализа выхода флуоресценции после действия 10 нс импульса

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Модель фотосистемы 2 для анализа выхода флуоресценции после действия 10 нс импульса Беляева1 Н.Е, Ризниченко1 Г.Ю,Шмитт2 Ф-И, Пащенко1 В.З, Рубин1 А.Б, Ренгер2 Г 1Биологический факультет Московского государственного университета, 119992, Москва ГСП-2, Ленинские горы, natalmurav@yandex.ru (495)939-0289 2Max-Volmer Laboratory of Optics and Atomic physics, Technical UniVersity Berlin 10623, Germany

  2. Тилакоидные мембраны в хлоропласте 10-5м (50100)10-9м

  3. и и ц 100% P н 5 е ц 10% с е р 4 о у 1% л ф 3 ь т с о 2 н в и с н 1 F е 0 т н И 0 - 2- 1 0 1 2 3 4 5 10 10 10 10 10 10 10 10

  4. Photon ФЛ Exiton Exciton

  5. The molecular mechanisms scheme for the primary charges separation (RRP model) H + Photon CP29 1ChlN* P680 Phe QA ChlN1P680* Phe QA CP47 CP26 CP26 k–t k–1 k1 D1 D2 Q Q CP24 CP43 B A CP24 Chl P680+ PheQA LHCI LHCI cyt Pheo b559 I I k h h Exciton LHCII trime trime k2 LHCI LHCI trimers k rs rs I I P680 LHCI LHCI (k’2) trime trime I I rs rs Chl P680+ Phe QA trime trime Tyr - Z rs rs Mn Chl P680 Phe QA 4 H O 2 H + 33kDa 24kDa 17kDa kt Schatz et al.. Bioph. J. 1988. Kinetic and energetic model for the primary processes in photosystem II. k2=kSTAB+k’2 QA kA=k=0.3 ns1 Roelofs et al. 1992. Global target analysis of picosecond chlorophyll fluorescence kinetic from pea chloroplasts . Biophys. J. 61, 1147 Phe P680+ P680*

  6. F Fm NADPH H + Photon CP29 PS II bf NADP+ PS I hn hn 2H+ F0 2H+ CP47 CP26 CP26 D1 D2 QA Fd bh FeSI Q Q 0 1 10 t, s CP24 PQ PQ CP43 B A CP24 PQ LHCI LHCI cyt Chl P680 bl Chl Chl fluorescence Pheo b559 I I PQH2 P700 Exciton LHCII trime trime LHCI LHCI FeSR trimers rs rs H2O Pc I I P680 f LHCI LHCI 2H+ trime trime I I -OOC rs rs trime trime Tyr - Z rs rs 2H+ 1/2O2 Q-cycle R-COO- Mn -OOC 4 3H+ H O lumen 2 H + H+ K+ R-COO- + + 33kDa 24kDa 17kDa thylakoid membrane _ _ stroma Cl- ADP + Pi Обобщенная модель первичных процессов фотосинтеза в тилакоиде имитирует процессы переносаэлектронов и ионов индуцированные светом. Для верификации полной модели и отдельных блоков используются данные по выходу флуоресценции Chl_a и кинетике трансмембранного электрического потенциала () иpH. ATP ATP synthase

  7. The catalytic cycle of photosystem II. Each rectangle represent a particular kinetic state determined by the redox stateы of its constituent electron carriers. Shaded are the states capable of emitting fluorescence quanta. 46, 47, 48, 49 45 * * * * * * * * * z z z z 4 3 z 6 2 1 HL+ 15 16 17 19 20 14 - Phe Phe Phe Phe Phe - Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Q Q A A Q Q Q 18 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 - - A A A Q Q H H - - - Q Q Q H H H B B B B B + + + + + + + 7 5 H H H H H H H s s s s s s s + + + + + + + + + + + + 21 22 23 24 25 26 27 - Phe Phe g g - - 5 1 Q Q g g A A 2 g g g Chl Chl - - 6 43 Q Q H H 7 3 4 PQH PQH B B PQH PQH PQH PQH PQH P680 P680 HL+ 2 2 2 2 2 2 2 28 32 z z 29 30 33 Phe Phe y y 2 6 41 Q Q Phe Phe - - x x A A 31 Phe Phe Phe - 6 2 Q Q - - A Q Q Q A A A A Phe Phe x x x x x - - Q Q PQ PQ PQ PQ PQ PQ PQ 5 1 3 4 7 Phe Phe Phe - A A - - - Q Q Q Q Q B B A A A 34 37 35 36 40 38 39 Q Q Q B B B - - Phe Phe Phe Phe Phe Phe - - - Q Q Q Q Q Q A A A A A A Q Q Q Q Q Q HL+ 5 1 B B B B B B 6 2 4 7 3 42 y y y y y kP680+ 5 4 3 1 7 HL+ 12 kF 8 9 10 - - Phe Phe Phe Phe Phe - - - Q Q Q Q Q kHD 11 A A A A A - - - - - Q Q Q Q Q B B B B B 13 k3CAR 44 Chl, the total PSII chlorophyll, including the antenna and the P680 pigments; Phe, pheophytin; QA and QB , primary and secondary quinone acceptors; PQ, plastoquinone; PQH2, plastoquinol; HL + and Hs+ are protons released into lumen and taken up from the stroma, respectively. Bold arrows mark the light steps. - The decay 1Chl* via: (а) radiative fluorescence emission (kFL), nonradiative dissipation to heat (kHD); by quenching due to cation radical P680 (kP680+) or by triplet carotenoid states (k3Car)

  8. * * * * * * * * * z z z z 4 3 6 2 - Phe Phe Phe Phe - Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Q Q A A Q Q P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 - - A A Q Q H H - - Q Q H H B B B B Phe Phe - 7 Q Q A A - - Q + + + + + + + + + + + + H Q H 27 B B - Phe - Q g A g g g - 6 Q H 7 4 3 PQH PQH B PQH PQH PQH PQH PQH 2 2 2 2 2 2 2 z y y 2 6 Phe - - x x Phe Phe Phe - 2 6 Q - - Q Q Q A A A A Chl Chl Phe Phe x x x - P680 - P680 Q Q PQ PQ PQ PQ PQ PQ PQ 4 7 3 Phe Phe Phe A A - - - Q Q Phe Q Q Q Phe B B A A A 37 34 38 35 40 39 36 - Q Q Q Q Q A B B B - - A Phe Phe Phe Phe - - Q Q Q Q A A A A Q Q Q Q B B B B 3 y y y kP680+ 4 7 3 Phe Phe - Q Q A A kF Q - - Q B Phe Phe Phe B - - Q Q Q kHD A A A - - - Q Q Q B B B 13 k3CAR Phe Phe - Q Q A A - - Q Q B B 46, 47, 48, 49 45 z z 5 1 HL+ 15 16 17 20 19 14 18 + + + + + + + H H H H H H H s s s s s s s 21 22 23 24 25 26 g g g 2 1 43 5 HL+ 28 32 29 30 33 41 Phe 31 Q A x x 5 1 HL+ 5 6 2 1 4 7 42 y y 5 1 HL+ Процессы ФС2, вызываемые светом 9 10 12 8 11 44

  9. Протокол режимов освещения образца и выход ФЛ в результате возбуждения 10-ти нс импульсом 10 ns 9 0 100ns 10 s 50s 0 s Эксперимент Модель Single turnover flash induced transients of the fluorescence yield (SFITFY) Belyaeva NE, Schmitt F-J, Steffen, R, Paschenko VZ, Riznichenko G Yu, Chemeris YuK, Renger G, and Rubin AB (2008) PS II model-based simulations of single turnover flash-induced transients of fluorescence yield monitored within the time domain of 100 ns–10 s on dark-adapted Chlorella pyrenoidosa cells. Photosynth Res 98: 105—119

  10. Имитация процессов ФС2, вызываемых 10 нс импульсом * * * * * * * * z z z 3 6 2 - Phe Phe Phe Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Chl Q A Q Q P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 P680 - A A Q H - - Q Q H H B B B Phe Phe Phe - - 7 Q Q Q A A A - - - Q + + + + + + + + + + + + H Q Q H H 27 B B B - Phe - Q g A g g - 6 Q H 3 7 PQH PQH B PQH PQH PQH PQH PQH 2 2 2 2 2 2 2 z y y 6 2 Phe - - x x Phe Phe - 2 6 Q - Q Q A A A Chl Chl Phe Phe x x - P680 - P680 Q Q PQ PQ PQ PQ PQ PQ PQ 7 3 Phe Phe A A - - - Q Q Phe Q Q Phe Phe B B A A 34 39 37 36 35 38 40 - - Q Q Q Q Q A B B - - A A Phe Phe - Q Q A A Q Q B B 3 y y 3 7 Phe Phe Phe - - Q Q Q A A A Q - - Q Q B Phe Phe B B - Q Q A A - - Q Q B B 13 Phe Phe Phe - - Q Q Q A A A - - - Q Q Q B B B 30s; S0S1 100s; S1S2 300s; S2S3 1ms; S3S0 46, 47, 48, 49 45 z z z 5 4 1 HL+ 15 16 17 20 19 14 18 + + + + + + + H H H H H H H s s s s s s s 21 22 23 24 25 26 g g g g 2 1 43 5 4 HL+ 28 32 29 30 33 41 Phe 31 Q A 50ns; S0S1 x x x 5 4 1 HL+ 5 6 2 1 4 7 42 y y y 4 5 1 HL+ 9 10 12 8 11 44

  11. Листья Arabidopsis thaliana [3Car(t)] = aCarexp(t3Car) Measuring light 0.8 mol photons m2 s1

  12. kL(t)=kL-Maxexp(-t /(4ns )) Measuring light 0.8 mol photons m2 s1

  13. 3-quencer model: Steffen R (2003) Time-resolved spectroscopic investigations of photosystem II. PhD thesis. Berlin Steffen R, Eckert H-J, Kelly AA, Dörmann P G and Renger G (2005) Investigations on the reaction pattern of photosystem II in leaves from Arabidopsis thaliana by time-resolved fluorometric analysis. Biochemistry 44: 31233132

  14. Анализ SFITFY данных в модели ФС 2: • Визуализация редокс состояний; • 2) Перенос электрона не зависит от интенсивности света в отличие от процессов диссипации энергии; • 3) Применены экспоненциальные функции для описания изменения параметров во времени Для различной интенсивности импульса определили параметры процессов диссипации возбуждения в антенне и при рекомбинации зарядов. Уточнили параметры переноса электрона на акцепторной стороне ФС 2 в листьях Arabidopsis thaliana

  15. Lebedeva GV, Belyaeva NE, Demin OV, Riznichenko GYu, Rubin AB (2002) Kinetic model of primary photosynthetic processes in chloroplasts. Description of the fast phase of chlorophyll fluorescence induction under different light intensities. Biophysics 47:968-980 Belyaeva NE, Schmitt F-J, Steffen, R, Paschenko VZ, Riznichenko G Yu, Chemeris YuK, Renger G, and Rubin AB (2008) PS II model-based simulations of single turnover flash-induced transients of fluorescence yield monitored within the time domain of 100 ns–10 s on dark-adapted Chlorella pyrenoidosa cells. Photosynth Res 98: 105—119

  16. Roelofs T.A., LeeC.-H., Holzwarth A.R. Biophys. J. 1992. V. 61. P. 1147-1163. Global target analysis of picosecond chlorophyll fluorescence kinetic from pea chloroplasts . Leibl W., Breton J., Deprez J., Trissl H.-W. Photosynth. Res. 1989. V. 22. P. 257-275. Photoelectric study on the kinetics of trapping and charge stabilization in oriented PS II membranes. Schatz G.H., Brock H., Holzwarth A.R. Biophys. J. 1988. V. 54. P. 397-405. Kinetic and energetic model for the primary processes in photosystem II. Renger, G., Eckert, H.-J., Bergmann, A., Bernarding, J., Liu, B., Napiwotzki, A., Reifarth, F., and Eichler, H. J. (1995) Fluorescence and spectroscopic studies on exciton trapping and electron transfer in photosystem II of higher plants, Aust. J. Plant Physiol. 22, 167-181. Lazar D. // J. Theor. Biol. 2003. V. 220, 469-503. Chlorophyll a Fluorescence Rise Induced by High Light Illumination of Dark-adapted Plant Tissue Studied by Means of a Model of Photosystem II and Considering Photosystem II Heterogeneity. Xin-Guang Zhu,Govindjee,Neil R.Baker, Eric deSturler,Donald R.Ort,Stephen P. Long. Chlorophyll afluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II. Planta (2005) 223:114 –133 Stirbet A., Govindjee, Strasser B.J., Strasser R.J. // J. Theor. Biol. 1998. V. 193. 131-151. Chlorophyll a fluorescence induction in higher plants: modeling and numerical simulation Strasser R.J., Tsimilli-Michael M., Srivastava A. // in G.C.Papageorgiou and Govindjee (eds):Chlorophyll Fluorescence:A Signature of Photosynthesis. 2005. Analysis of the Chlorophyll a Fluorescence Transient 1.Лебедева Г.В., Беляева Н.Е., Дёмин О.В., Ризниченко Г.Ю., Рубин А.Б. Кинетическая модель первичных процессов фотосинтеза в хлоропластах. Биофизика, 2002, т. 47, вып.6, с.1044-1058. 2. Н.Е. Беляева, А.А. Булычев, Г.Ю. Ризниченко Применение модели ФС2 для анализа нарастания выхода флуоресценции, вызываемой постоянным светом. В сб. «Математика. Компьютер. Образование.» 2007, вып.14,. т.2, 335-346. 3. P. Horton & A.V. Ruban. Regulation of Photosystem II Photosynth. Res. 1992, 34: 375-385. 4. D. Bruce, G. Samson, and C. CarpenterThe Origins of Nonphotochemical Quenching of Chlorophyll Fluorescence in Photosynthesis. Direct Quenching by P680+ in Photosystem II Enriched Membranes at Low pH Biochemistry, 1997, 36 (4), 749 -755 G. Schansker S. Z. Tótha and R. J. Strasser, Bioch. Bioph. Acta (BBA) - BioenergeticsV. 1757, 7, 2006, P. 787-797 Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: The qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side Natalia A. Krupenina, Alexander A. Bulychev Action potential in a plant cell lowers the light requirement for non-photochemical energy-dependent quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 1767 (2007) 781–788 Henning Hormann, Christian Neubauer and Ulrich Schreiber On the relationship between chlorophyll fluorescence quenching quantum yield of electron transport in isolated thylakoids Photosynthesis Research 40: 93-106, 1994. [1] Lebedeva G.V., Belyaeva N.E., Demin O.V, Riznichenko G.Yu., Rubin A.B. Biofizika, 2002, v.47, n.6, 1044-1058. [2] Strasser R.J., Srivastava A., Govindgee. Photochem. and Photobiol. 1995. 61, 32-42. [3] Bulychev A.A., Wredenberg W.J. Bioelectrochemistry. 2001. 54, 157-168.[4] Lebedeva G.V., Belyaeva N.E., Riznichenko G.Yu., Rubin A.B., Demin O.V. Zh. Fiz. Khim., 2000, v.74, 1897-1906.

  17. Mathematical model : Xi‑ concentration of i-th metabolite. Electron carriersgrouped in pigment – protein complexes. The time dependence of probabilities of the ith states of the complex : The initial probabilities are pi(0)=bi , i=1,...l . Concentrations of the mobile carrier in the oxidized and reduced forms: Complex concentrations participating in transfer step : ki ‑ bimolecular rate constants.

  18. The rate constants : Equilibrium constants of oxidation-reduction reactions: Emis the difference of midpoint redox potentials. k+()=exp(-/(RT/F))k+ k–()=exp((1-)/(RT/F))k–  -dependence of kinetic constants : i indicates the contribution of each electrogenic step to  generation,  - the part of the membrane potential, which influences the rate constant of the direct reaction (k+). Time dependence of  : (сm/F)(d()/dt)= V(qlumen) –V(qstroma ) сm is the apportioned capacity of the thylakoid membrane, F is Faraday constant, qlumen(stroma) ‑ the lumenal (stromal) charge . The fluorescence yield:

  19. Consumption of the transmembrane electrochemical potential To describe the ATP synthesis we used the expression based on the minimal kinetic scheme of ATP synthesis-hydrolysis reaction: Where =F/RT . The dependence of the proton leakage on the potential was considered according to the mechanism of ion transfer trough the three barrier channel : The similar expression was used to describe K+ transfer ::

More Related