Signalised intersections
Download
1 / 78

SIGNALISED INTERSECTIONS - PowerPoint PPT Presentation


  • 86 Views
  • Uploaded on

SIGNALISED INTERSECTIONS. TS4273 Traffic Engineering. First Traffic Light. Traffic lights were used before the advent of the motorcar. In 1868, British railroad signal engineer J P Knight invented the first traffic light, a lantern with red and green signals.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' SIGNALISED INTERSECTIONS' - lars-perry


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Signalised intersections

SIGNALISED INTERSECTIONS

TS4273 Traffic Engineering


First traffic light
First Traffic Light

  • Traffic lights were used before the advent of the motorcar. In 1868, British railroad signal engineer J P Knight invented the first traffic light, a lantern with red and green signals.

  • It was installed at the intersection of George and Bridge Streets in front of the British House of Commons to control the flow of horse buggies and pedestrians.

http://www.didyouknow.cd/trafficlights.htm


Prinsip prinsip desain simpang bersinyal
Prinsip-prinsip desain simpang bersinyal

  • Suatu persimpangan membutuhkan lampu lalulintas jika waktu tunggu rata-rata kendaraan sudah lebih besar daripada waktu tunggu rata-rata kendaraan pada persimpangan dengan lampu lalulintas.


Prinsip prinsip desain simpang bersinyal1
Prinsip-prinsip desain simpang bersinyal

Waktu tunggu rata-rata kendaraan pada persimpangan bersinyal dipengaruhi oleh:

  • Arus lalulintas pada masing-masing arah,

  • Waktu antara kedatangan kendaraan dari masing-masing arah,

  • Keberanian pengemudi untuk menerima waktu antara yang tersedia guna menyeberangi jalan.


Prinsip prinsip desain simpang bersinyal2

Unsignalised

Signalised

Delay

Traffic Flow

Prinsip-prinsip desain simpang bersinyal


Scope of ihcm signalised intersection analyses
Scope of IHCMSignalised Intersection Analyses

  • Isolated, fixed-time controlled signalised intersections with normal geometry layout (four-arm and three-arm) and traffic signal control devices.

  • Coordinated traffic signal control is normally needed if the distance to adjacent signalised intersections is small (< 200m).  Persimpangan Raya Darmo – Polisi Istimewa & Raya Darmo – RA Kartini.


Objectives of ihcm signalised intersection analyses
Objectives of IHCMSignalised Intersection Analyses

  • To avoid blockage of an intersection by conflicting traffic streams, thus guaranteeing that a certain capacity can be maintained even during peak traffic conditions;


Objectives of ihcm signalised intersection analyses1
Objectives of IHCMSignalised Intersection Analyses

  • To facilitate the crossing of a major road by vehicles and/or pedestrians from a minor road;

  • To reduce the number of traffic accidents caused by collisions between vehicles in conflicting directions.




Time sequence for two phase signal control

Street A Intersections

Street B

Time Sequence for Two-Phase Signal Control


Time sequence for four phase signal control
Time Sequence Intersectionsfor Four-Phase Signal Control


Time sequence for two phase signal control1

Street A Intersections

Street B

Time Sequence for Two-Phase Signal Control


Purpose of the intergreen period
Purpose of the Intergreen Period Intersections

  • Warn discharging traffic that the phase is terminated.  Amber Period (for urban traffic signal in Indonesia is normally 3,0 sec)

  • Certify that the last vehicle in the green phase which is being terminated receives adequate time to evacuate the conflict zone before the first advancing vehicle in the next phase enters the same area.  All-Red Period


Signal phasing arrangements
Signal Phasing Arrangements Intersections

  • Introducing more than two phases normally leads to an increase of the cycle time and of the ratio of time allocated to switching between phases (especially for isolated and fixed-controlled).


Signal phasing arrangements1
Signal Phasing Arrangements Intersections

  • Although this may be beneficial from the traffic safety point of view, it normally means that the overall capacity of the intersection is decreased.


Basic model for saturation flow akcelik 1989
Basic Model for Saturation Flow Intersections(Akcelik 1989)


Basic model saturation flow
Basic Model Saturation Flow Intersections

  • Discharge rate starts from 0 at the beginning of green and reaches its peak value after 10-15 sec

  • Effective Green = Displayed Green Time – Start Loss + End Gain

  • Start loss  End gain  4,8 sec (MKJI p.2-12)

  • Effective Green = Displayed Green Time


Basic model saturation flow1
Basic Model Saturation Flow Intersections

  • Base saturation flow is different between Protected approach and Opposed approach

  • For protected approach  S0 = 600 x We

  • For opposed approach  S0 in Indonesia usually lower where there is a high ratio of right turning movements, compare with Western models.


Perhitungan arus jenuh metode time slice
Perhitungan Arus Jenuh IntersectionsMetode Time Slice

Arus jenuh/jam  (3.600/5)x4,5 = 3.240 smp/jam

Jika lebar lajur = 4,0m  (3.240/4) = 810 smp/jam/m

Maka  S = 810 x We


Traffic safety considerations
Traffic Safety Considerations Intersections

  • Traffic accident rate for signalised intersections has been estimated as 0,43 accidents/million incoming vehicles as compare to 0,60 for unsignalised intersections and 0,30 for roundabouts.


Step a 1 geometric traffic control and environmental conditions
STEP A-1: Geometric, Traffic Control and Environmental Conditions

  • General information (date, handled by, city, etc.)

  • City size (to the nearest 0,1 M inhabitants)

  • Signal phasing & timing

  • Left turn on red (LTOR)

  • Approach code

  • Road environment and level of side friction

  • Median

  • Gradient

  • Approach width (to the nearest tenth of a meter)



Step a 2 traffic flow conditions
STEP A-2: Traffic Flow Conditions Conditions

Q = QLV + (QHV x pceHV) + (QMC x pceMC)


Step b 1 signal phasing and timing
STEP B-1: Signal Phasing and Timing Conditions

  • If the number and types of signal phases are not known, two-phase control should be used as a base case.

  • Separate control of right-turning movements should normally only be considered if a turning-movement exceeds 200 pcu/h and has a separate lane.


Step b 1 signal phasing and timing1
STEP B-1: Signal Phasing and Timing Conditions

  • Early start = leading green one approach is given a short period before the start of the green also in the opposing direction (usually 25%-33% from total green time)

  • Late cut-off = lagging green  the green light in one approach is extended a short period after the end of green in the opposing direction.

  • The length of the leading and the lagging green should not be shorter than 10 sec.


Step b 2 intergreen time and lost time
STEP B-2: ConditionsIntergreen time and lost time

Only for planning purposes !!!


Step b 2 intergreen time and lost time1
STEP B-2: ConditionsIntergreen time and lost time

For operational and design analysis !!!

  • LEV, LAV distance from stop line to conflict point for evacuating and advancing vehicle (m)

  • lEV  length of evacuating vehicle (m)

  • VEV, VAV  speed of evacuating and advancing vehicle (m/sec)


Step b 2 intergreen time and lost time2
STEP B-2: ConditionsIntergreen time and lost time

  • VAV  10m/sec (motor vehicles)

  • VEV  10m/sec (motor vehicles)

  • VEV  3m/sec (un-motorised)

  • VEV  1,2m/sec (pedestrians)

  • lEV  5m (LV or HV)

  • lEV  2m (MC or UM)


Step b 2 intergreen time and lost time3
STEP B-2: ConditionsIntergreen time and lost time

  • IG  Intergreen = Allred + Amber

  • The length of AMBER usually 3,0 sec


Step c 1 approach type
STEP C-1: Approach Type Conditions

PROTECTED (P)  Discharge without any conflict between right-turning movements and straight-through/left-turning movements.


Step c 1 approach type1
STEP C-1: Approach Type Conditions

  • OPPOSED (O)  Discharge with conflict between right-turning movements and straight-through/left-turning movements from different approaches with green in the same phase.


Step c 2 effective aproach width w e
STEP C-2: ConditionsEffective Aproach Width (We)

Without LTOR

  • For Approach Type P (Q = QST)

  • If WEXIT We x (1 - pRT - pLT)

     We = WEXIT


Step c 2 effective aproach width w e1
STEP C-2: ConditionsEffective Aproach Width (We)

  • If WLTOR≥ 2m (it is assumed that the LTOR vehicle can bypass the other vehicle)

     We = min { (WA-WLTOR) , (WENTRY) }

  • For Approach Type P (Q = QST)

    If WEXIT < We x (1 – pRT)

     We = WEXIT


Step c 2 effective aproach width w e2
STEP C-2: ConditionsEffective Aproach Width (We)

  • If WLTOR< 2m (it is assumed that the LTOR vehicle cannot bypass the other vehicle)

     We = min { (WA) , (WENTRY+WLTOR) ,

    (Wax(1+pLTOR)-WLTOR)}

  • For Approach Type P (Q = QST)

    If WEXIT < We x (1 – pRT – pLTOR)

     We = WEXIT


Step c 3 base saturation flow s
STEP C-3: Base Saturation Flow (S) Conditions

  • For protected approach


STEP C-3: Base Saturation Flow (S) Conditions

  • For Approach Type P

  • S0 base saturation flow (pcu/hg)

  • We effective width (m)

  • Figure C-3:1 page 2-49


Step c 3 base saturation flow s1
STEP C-3: Base Saturation Flow (S) Conditions

  • For Approach Type O (opposed)

  • QRT and QRTO (Column 14 Form SIG-II opposed discharge right-turning)

  • Figure C-3:2 page 2-51 for approaches without separate right-turning.

  • Figure C-3:3 page 2-52 for approaches with separate right-turning.

  • Use interpolation if approach width larger or smaller than actual We


Step c 3 base saturation flow s2
STEP C-3: Base Saturation Flow (S) Conditions

  • Ex: without separate right-turning lane

    QRT = 125 pcu/h, QRTO = 100 pcu/h

    Actual We = 5,4m

    Obtain from Figure C-3:2 p. 2-51 (We=5 & We=6) S6,0 = 3.000 (pcu/hg) ; S5,0 = 2.440 (pcu/hg)

    Calculate;

    S5,4 =(5,4-5,0)x(S6,0 - S5,0)+ S5,0

    =0,4(3.000-2.440)+2.440  2.660 (pcu/hg)


Step c 3 base saturation flow s3
STEP C-3: Base Saturation Flow (S) Conditions

  • If right-turning movement > 250 pcu/h, protected signal phasing should be considered

  • For No Separate RT-lane

  • If QRTO < 250 pcu/h

  • Determine SPROV for QRTO = 250 pcu/h

  • Determine Actual S as

  • S = SPROV – [(QRTO - 250) x 8]pcu/h


Step c 3 base saturation flow s4
STEP C-3: Base Saturation Flow (S) Conditions

  • For No Separate RT-lane

  • If QRTO > 250 pcu/h

  • Determine SPROV for QRTO and QRT= 250 pcu/h

  • Determine Actual S as

  • S = SPROV – [(QRTO + QRT - 500) x 2]pcu/h

  • If QRTO < 250 pcu/h and QRT > 250 pcu/h

  • Determine S as for QRT = 250 pcu/h


Step c 3 base saturation flow s5
STEP C-3: Base Saturation Flow (S) Conditions

  • For Separate RT-lane

  • If QRTO > 250 pcu/h

  • QRT < 250 pcu/h Determine S from Figure C3:3 through extrapolation

  • QRT > 250 pcu/h Determine SPROV as for QRTO and QRT= 250 pcu/h

  • If QRTO < 250 pcu/h and QRT > 250 pcu/h

  • Determine S from Figure C3:3 through extrapolation


Step c 4 city size adjustment factor f cs table c 4 3 p 2 53
STEP C-4: City Size Adjustment Factor F ConditionsCS [ Table C-4:3 p.2-53]


Step c 4 side friction adjustment factor f sf table c 4 4 p 2 53
STEP C-4: Side Friction Adjustment Factor F ConditionsSF [ Table C-4:4 p.2-53]


Step c 4 side friction adjustment factor f sf table c 4 4 p 2 531
STEP C-4: Side Friction Adjustment Factor F ConditionsSF [ Table C-4:4 p.2-53]


Step c 4 side friction adjustment factor f sf table c 4 4 p 2 532
STEP C-4: Side Friction Adjustment Factor F ConditionsSF [ Table C-4:4 p.2-53]


Step c 4 gradient adjustments factors f g figure c 4 1 p 2 54
STEP C-4:Gradient Adjustments Factors F ConditionsG [Figure C-4:1 p.2-54]

If G  0  1 – (0,01 x G)

If G < 0  1 – (0,005 x G)


Step c 4 effect of parking adjustments factors f p figure c 4 2 p 2 54
STEP C-4: Effect of Parking Adjustments Factors F ConditionsP [Figure C-4:2 p.2-54

  • LP  distance between stop-line

    and first parked vehicle (m)

  • WA  Width of the approach (m)

  • g  Green time in the approach (default value 26 sec)

  • It should not be applied in cases were the effective width is determined by the exit width.


Step c 4 right turn adjustments factors f rt
STEP C-4: Right Turn Adjustments Factors F ConditionsRT

FRT = 1.0 + pRT x 0.26


Step c 4 left turn adjustments factors f lt
STEP C-4: Left Turn Adjustments Factors F ConditionsLT

FLT = 1.0 - pLT x 0.16


Calculated the adjusted value of saturation flow s
Calculated the adjusted value Conditionsof saturation flow S

  • SO Base saturation flow

  • FCS  City size

  • FSF  Side friction

  • FG  Gradient

  • FP  Parking

  • FRT  Right turn

  • FLT  Left turn


Step c 5 flow saturation flow ratio
STEP C-5: Flow/Saturation Flow Ratio Conditions

  • Calculate the Flow Ratio (FR) for each approach

  • Calculate the Intersection Flow Ratio (IFR)

  • Calculate the Phase Ratio (PR) for each phase

Sum of the critical (highest) flow ratios for all consecutive signal phases in a cycle


Step c 6 cycle time and green time
STEP C-6: Cycle Time and Green Time Conditions

  • Unadjusted cycle time (Cua)

  • Green time (g)

  • Adjusted cycle time (c)

LTI = S off all intergreen periods

2 phase  40-80 sec

3 phase  50-100 sec

4 phase  80-130 sec

green times < 10 sec should be avoided !!!


Step d 1 capacity
STEP D-1: Capacity Conditions

  • Calculate the capacity of each approach

  • Calculate the Degree of Saturation

Acceptable value normally 0,75 !!!

If the signal timing has been correctly done, DS will be nearly the same in all critical approaches !!!


Step d 2 need for revisions
STEP D-2: Need For Revisions Conditions

  • Increase of approach width (especially for the approaches with the highest critical FR value)

  • Changed signal phasing (i.e. separate phase for right-turning traffic)

  • Prohibition of right turning movements will normally increase capacity (i.e. reduction of the phase required).


Step e 1 preparations
STEP E-1: Preparations Conditions

  • Fill in the information required in the head of Form SIG-V


Step e 2 queue length
STEP E-2: Queue Length Conditions

  • For DS > 0,5

  • NQ1 number of pcu that remain from the previous green phase

  • DS  degree of saturation = Q/C

  • GR  green ratio

  • C  capacity (pcu/h) = saturation flow x green ratio

  • For DS  0,5


Step e 2 queue length1
STEP E-2: Queue Length Conditions

  • NQ2 number of queuing pcu that arrive during the red phase

  • GR  green ratio = g/c

  • g  green time (sec)

  • c  cycle time (sec)

  • DS  degree of saturation = Q/C

  • Q  traffic flow (pcu/h)


Step e 2 queue length2
STEP E-2: Queue Length Conditions

  • QL  Queue length (m)

  • NQMAX adjust NQ with desired probability for overloading [for planning and design  5%, for operation 5-10%] figure E-2:2 p.2-66

  • 20  average area occupied per pcu (20 sqm)

  • WENTRY  entry width (m)


Step e 3 stopped vehicle
STEP E-3: Stopped Vehicle Conditions

  • NS  stop rate

  • NQ  total number of queuing vehicle

  • Q  traffic flow (pcu/h)

  • c  cycle time (sec)


Step e 3 stopped vehicle1
STEP E-3: Stopped Vehicle Conditions

  • NSV  number of stopped vehicles

  • Q  traffic flow (pcu/h)

  • NS  stop rate


Step e 4 delay
STEP E-4: Delay Conditions

  • A 

  • GR  green ratio

  • DS  degree of saturation = Q/C


Step e 4 delay1
STEP E-4: Delay Conditions

  • DT  mean traffic delay (sec/pcu)

  • c  cycle time (sec)

  • NQ1 number of pcu that remain from the previous green phase

  • C  capacity (pcu/h)


Step e 4 delay2
STEP E-4: Delay Conditions

  • DGj mean geometric delay for approach j (sec/pcu)

  • pSV proportion of stopped vehicles in the approach = MIN (NS, 1)

  • pT proportion of turning vehicles in the approach

  • Geometric Delay for LTOR = 6 sec [p.2-69]


Step e 4 delay3
STEP E-4: Delay Conditions

  • DI average delay for the whole intersection

  • Average delay can be used as an indicator of the Level of Service (LOS) of each individual approach as well as of the intersection as a whole.


Indeks tingkat pelayanan itp lalulintas di persimpangan dengan lampu lalulintas
Indeks Tingkat Pelayanan (ITP) Lalulintas ConditionsDi Persimpangan Dengan Lampu Lalulintas

Sumber: Perencanaan & Pemodelan Transportasi, Tamin, 2000


Cara cara untuk meningkatkan kapasitas simpang bersinyal
Cara-cara untuk meningkatkan kapasitas Simpang Bersinyal Conditions

  • Pelebaran lengan pendekat

    Kapasitas tergantung pada arus jenuh yang melewati garis henti (lebar lengan pendekat).

    Melebarkan lengan pendekat  meningkatkan kapasitas persimpangan.

    Panjang dari pelebaran lengan pendekat juga sangat penting untuk diperhatikan.


Cara cara untuk meningkatkan kapasitas simpang bersinyal1
Cara-cara untuk meningkatkan kapasitas Simpang Bersinyal Conditions

  • Menaikkan waktu siklus

    semakin lama waktu siklus  semakin besar kapasitas persimpangan  semakin tinggi antrian dan tundaan yang terjadi

    Menurut MKJI 1997 [p.2-60] kisaran waktu siklus adalah 40 s/d 130 detik

    Pada kondisi tertentu “terpaksa” digunakan waktu siklus > 130 detik.


Cara cara untuk meningkatkan kapasitas simpang bersinyal2
Cara-cara untuk meningkatkan kapasitas Simpang Bersinyal Conditions

  • Perubahan pola fase

    Perlu dilakukan simulasi untuk mendapatkan pola fase yang paling efisien.

    Semakin sedikit fase  semakin tinggi kapasitas persimpangan  semakin besar kemungkinan konflik yang dapat terjadi.

    Umumnya jumlah fase yang digunakan berkisar antara 2 s/d 4.

    Siklus dengan 2 fase umumnya dilengkapi dengan early cut-off atau late-start.  persimpangan Raya Darmo – Polisi Istimewa


Cara cara untuk meningkatkan kapasitas simpang bersinyal3
Cara-cara untuk meningkatkan kapasitas Simpang Bersinyal Conditions

  • Meminimalkan waktu antar-hijau

    Waktu antar-hijau diperlukan untuk menjamin keamanan kendaraan yang melewati simpang pada saat detik akhir hijau, agar tidak tertabrak kendaraan yang mendapatkan fase hijau berikutnya.

    Meminimalkan waktu hijau  mendekatkan garis henti dengan pusat persimpangan.


Cara cara untuk meningkatkan kapasitas simpang bersinyal4
Cara-cara untuk meningkatkan kapasitas Simpang Bersinyal Conditions

  • Larangan belok kanan

    Meningkatkan kapasitas akibat pengurangan fase.

    Namun harus dilakukan manajemen lalulintas untuk melayani kendaraan yang hendak belok kanan dengan menyediakan U-turn atau Re-routing.


Prinsip prinsip desain simpang secara umum di indonesia
Prinsip-prinsip desain simpang Conditionssecara umum di Indonesia

  • Jari-jari tikungan berkisar antara 6 s/d 9 meter

  • Hindari jari-jari terlalu kecil  kendala manuver bagi bus & truk

  • Fasilitas penyeberang jalan (zebra cross)  2,5 s/d 5 meter sejarak 2 meter didepan garis henti

  • Panjang pelebaran harus lebih besar dari probabilitas panjang antrian terbesar


Prinsip prinsip desain simpang secara umum di indonesia1
Prinsip-prinsip desain simpang Conditionssecara umum di Indonesia

  • Jalur khusus bus berakhir pada awal panjang antrian terbesar

  • Jika arus lalulintas belok kanan cukup besar, perlu dibuatkan jalur khusus belok kanan dilengkapi dengan rambu dan marka yang sesuai


ad