Escoamento Superficial: Vazão, Hidrógrafa, Inundações,
Sponsored Links
This presentation is the property of its rightful owner.
1 / 55

Escoamento Superficial: Vazão, Hidrógrafa, Inundações, Modelos hidrológicos PowerPoint PPT Presentation


  • 66 Views
  • Uploaded on
  • Presentation posted in: General

Escoamento Superficial: Vazão, Hidrógrafa, Inundações, Modelos hidrológicos. modified from www.usda.gov/stream_restoration/chap1.html. Figure 1.18. Q - Volume de água passando por um ponto por unidade de área Q=VA ou WDV. www.aquatic.uoguelph.ca/rivers/chphys.htm. Vazão e hidrógrafa.

Download Presentation

Escoamento Superficial: Vazão, Hidrógrafa, Inundações, Modelos hidrológicos

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Escoamento Superficial: Vazão, Hidrógrafa, Inundações,

Modelos hidrológicos


modified from www.usda.gov/stream_restoration/chap1.html

Figure 1.18

  • Q - Volume de água passando por um ponto por unidade de área

  • Q=VA ou WDV


www.aquatic.uoguelph.ca/rivers/chphys.htm

Vazão e hidrógrafa


Hidrógrafa Anual


Hidrógrafa de evento

Figure 1.14

www.usda.gov/stream_restoration/chap1.html


Figure 1.15

http://www.usda.gov/stream_restoration/Images/scrhimage/chap1/fig1-15.jpg

Efeitos da urbanização em uma hidrógrafa de evento


Fig. - 2.10

www.usda.gov/stream_restoration/chap1.html

Caminhos do escoamento superficial


Escoamento superficial

  • Ocorrem quando solos

    • Estão saturados (após pesada chuva)

    • Possuem baixa permeabilidade (ex. argila)

  • Fortemente influenciado pela paisagem e uso da terra

    • Região de exposição de rochas e base de lagos são impermeáveis ou tem baixa permeabilidade

    • Superfícies impermeáveis (estacionamentos) gera superfícies impermeáveis

    • Práticas de atividades florestais e agrícolas afetam o fluxo dos sistemas de drenagem


Características Físicas que Afetam o Escoamento

  • Declividade

  • Topografia

  • Direção de orientação

  • Padrão de drenagem

  • Presença de lagos, reservatórios

  • Uso da Terra

  • Vegetação

  • Tipo de Solo

  • Área de drenagem

  • Forma da bacia

  • Altitude


www.aquatic.uoguelph.ca/rivers/chphys.htm

Inundações

  • Nós tendemos a ver inundações como eventos não previsíveis e desastrosos. De fato inundações podem ser previsíveis e são ocorrências necessárias.

  • Como a superfície impermeável afeta a probabilidade de inundações?


  • Intervalo de Recorrência

    • “1 em 100 anos de inundação”

    • = probabilidade de 0.01 ou 1%

    • Também referido como intervalo de recorrência

    • Definido como P = 1 / T, onde:

      • P = Probabilidade de Inundação

      • T = Intervalo de Recorrência


Influência humana sobre as inundações

www.aquatic.uoguelph.ca/rivers/chphys.htm

  • Rápido escoamento em rios canalizados aumenta a frequencia de inundações e o pico na hidrógrafa em pontos a jusante


Associando Uso da Terra com a Qualidade da Água

Menos Superfície Impermeável = Mais Água


Superfície Impermeável

  • Fornece uma superfície para acumulação de poluentes

  • Leva ao aumento dos poluentes via escoamento e inundação

  • Inibe a recarga dos aquíferos


Impactos das mudanças do uso da terra

  • Efeitos Hidrológicos

    • Ruptura do balanço natural da água

    • Aumento do pico de inundação

    • Aumento do escoamento superficial

    • Maior frequencia de inundações


www.mmsd.com/stormwaterweb/Volume1B.htm

Escoamento superficial e desenvolvimento


The Importance of Spatial Patterns

Surface hydrologists have recognized the importance of spatial patterns of runoff generation, particularly as driven by topography (e.g. TOPMODEL, SHE, InHM, POWER, ……)

But numerical experiments suggest that even small rates of recharge to deeper layers can dramatically influence patterns of wetness


Bringing together these two communities by using a common geospatial data model

http://www.crwr.utexas.edu/giswr

GIS

Water Resources

CRWR

GIS in Water Resources Consortium


ArcGIS HydroData Model

Hydrology

Hydrography

Maidment, 2002


National Hydro Data Programshttp://www.crwr.utexas.edu/giswr/nhdconf/nationalhydro.html

National Elevation Dataset

(NED)

National Hydrography Dataset

(NHD)

Elevation Derivatives for

National Applications (EDNA)

Watershed Boundary Dataset


Streams

Drainage Areas

Hydrography

Channels

Terrain Surfaces

Rainfall Response

Digital Orthophotos

Thematic

Layers

supporting the

Arc Hydro

data model

Michael Zeiler

“Modeling Our World”


How do we combine these data?

Digital Elevation

Models

Streams

Watersheds

Waterbodies

Maidment, 2002


An integrated raster-vector database

Maidment, 2002


Integrating Data Inventory using a Behavioral Model

Relationships between

objects linked by tracing path

of water movement

Maidment, 2002


Intrinsic Hydrologic Modeling

  • Dr Tarboton

    • DEM-based hydrologic modeling

  • USGS

    • Stream Stats

  • Mean annual flows and pollutant loads

http://ststdmamrl.er.usgs.gov/streamstats/expert.htm


Dynamic Linked Library

Can have

Fortran

subroutines

in a DLL

Muskingum

flow routing

Maidment, 2002


Independent Hydrologic Model

VB progam reads and writes

text files

Maidment, 2002


Analysis, Modeling,

Decision Making

Arc Hydro

Geodatabase

Interfaces to Arc Hydro Data and Models

Excel

ArcGIS

Relational Database

(Access)

Visual Basic

Maidment, 2002


Three basic water problems

  • Too little water (Drought and water supply)

  • Too much water (Flooding)

  • Its dirty (Water Quality)

Also have significant GIS effort on environmental issues related to water such as habitat assessment

Maidment, 2002


1996 Texas Drought

  • George W. Bush, (then Governor of Texas) asked: “Tell me how much water we have, how much water we’re using and how much water we need”

  • State water officials did not have adequate answers

Maidment, 2002


Texas Water Planning

  • 1997 Texas Legislature passed Senate Bill 1 which provided for

    • State-wide geospatial data development (topography, hydrography, land use, soils and orthophotos)

    • Water planning in 14 regions rather than state-wide

    • Assessment of water availability for all water permits

Maidment, 2002


Hydrologic Cataloging Units (HUCS)

Hydrologic Unit Code

= 12100203

Guadalupe Basin

(4 HUC’s)

  • 2015 HUC’s cover continental US

  • average area ~ 1 county

Maidment, 2002


Stream Gauge (14)

Water Diversion (440)

Water Availability in the Guadalupe Basin

Estimate water availability at each legally permitted water diversion point based on “naturalized” flow at stream gages and the effects of other permitted diversions

Maidment, 2002


Digital Elevation Model

San Marcos basin

National Elevation Dataset

30m x 30m cells

11,000,000 cells to cover San Marcos basin

70,000,000 cells to cover Guadalupe basin

Maidment, 2002


Drainage Area Delineated from the Digital Elevation Model

Arc Hydro attribute DrainArea

Maidment, 2002


Ad

Af

Qd = Qf

Estimating Naturalized Flow at Diversion Points

Naturalized flow record at stream gage

(50 years of monthly flows)

Qf

Af

Qd

Estimated flow record at diversion point

Ad

Maidment, 2002


Length Downstream

Flow distance (D to F)

= Length Downstream (D)

– Length Downstream (F)

Length Downstream (F)

F

D

D

Seepage

losses

F

Arc Hydro attribute LengthDown

Length Downstream (D)

Maidment, 2002


Flood Hydrology and Hydraulics

ArcView

Input Data

DEM

ArcView

Flood

plain maps

HEC-GeoHMS

Hec-GeoRAS

HEC-RAS

Water

surface

profiles

HEC-HMS

Flood

discharge

Maidment, 2002


Stream Definition: Waller Creek

Austin Watersheds with Streamsderived from Aerial Photographs

Streamlines generated by the aerial photographs are not always continuous.

Maidment, 2002


Information for Correcting Stream Network

  • DEM

  • Contours

  • Storm sewers

  • Orthophotos

Maidment, 2002


Resulting Corrected Stream

  • Subsequent steps:

  • Verification of corrected streams by flood hydrologists.

  • Running “tracer” program to connect arcs.

  • Burning of streams into DEM.

Maidment, 2002


Area to Stream Outlet Connectivity

Maidment, 2002


Area to Sewer InletConnectivity

Maidment, 2002


Area to Area Connectivity: SchematicLinks built using NextDownID

Maidment, 2002


TIWSSTexas Integrated Water Simulation System

WRAP

Water Availability

SWAT

Water Quality

Arc Hydro

Geospatial and Temporal Data

Modflow

Groundwater

HEC Models

Flooding & Water Management

Maidment, 2002


Flood Plain Mapping

Maidment, 2002


Connecting HMS and RAS

Maidment, 2002


Flood Hydrology and Hydraulics

ArcView

Input Data

DEM

ArcView

Flood

plain maps

HEC-GeoHMS

Hec-GeoRAS

HEC-RAS

Water

surface

profiles

HEC-HMS

Flood

discharge

Maidment, 2002


HEC-RAS: Background

  • River Analysis System model of the U.S. Army Corps of Engineers

  • Input = cross-section geometry and flow rates

  • Output = flood water elevations

Cross-Section Schematic

Maidment, 2002


Waller Creek

Watersheds

Network

Channel

Maidment, 2002


HEC-RAS: Cross-Section Description

  • Points describe channel and floodway geometry

  • Bank station locations

  • Water surface elevations and floodplain boundaries

Maidment, 2002


Discharge at a Particular Cross-Section

Maidment, 2002


HEC-RAS: Output

Graphical

Text File

Maidment, 2002


Floodplain Mapping: Plan View

Maidment, 2002


3D Terrain Modeling: Ultimate Goal

Maidment, 2002


  • Login