A high-power, beam-based, coherently enhanced THz radiation source

Download Presentation

A high-power, beam-based, coherently enhanced THz radiation source

Loading in 2 Seconds...

- 47 Views
- Uploaded on
- Presentation posted in: General

A high-power, beam-based, coherently enhanced THz radiation source.

A high-power, beam-based, coherently enhanced THz radiation source

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

A high-power, beam-based, coherently enhanced THz radiation source

We propose a Smith-Purcell radiation device that can potentially generate high average power THz radiation with very high conversion efficiency. The source is based on a train of short electron bunches from an rf photoemission gun at an energy of a few MeV. Particle tracking simulation and analysis show that with a beam current of 1 mA, it is feasible to generate hundreds of Watts of narrow-band THz radiation at a repetition rate of 1 MHz.

Yuelin Li, Yin-E Sun, and Kwang-Je Kim

Accelerator Systems Division

Argonne Accelerator Institute

Argonne National Laboratory, Argonne, IL 60439

- Power of THz imaging
- Capability of current available source
- Our Approach of THz generation
- Coherence enhancement
- Laser pulse train generation
- E-beam generation and dynamics
- Smith-Purcell radiation
- Putting together

- Challenges
- Summary

- Broadband, THz TDS, <650 mW
- CW
- Gunn diode/Back wave oscillators, <200 mW
- THz-wave parametric oscillators, <100 mW
- THz gas lasers, <180 mW
- QCL, <100 mW
- FEL, >20 W, but bulky

~mW, 8 min

H. B. Liu et al, Proc. IEEE 95, 1515 (2007).

Higher power is needed field application.

Radiation power from a electron bunch

Coherent radiation

Incoherent radiation

dE/dw: electron radiation energy into per spectral frequency

N:total number of electrons

Coherence factor

S(t): electron temporal distribution

Short bunch is the key for high coherent factor!

Y.Li and K.-J. Kim, Appl. Phys. Lett. 92, 014101 (2008).

Energy from zero to 8 MeV (see later)

The degradation is due to space charge force.

Q: total charge

sz, sr:longi and trans beam sizes

g: relativistic factor

To solve the problem

Higher beam energy, costly on $$$$

Less charge, costly on photons

How about bunch train? Reduced space charge but preserved coherence factor.

Coherence factor for a bunch train

scoh:coherence factor for individual bunched

tb:bunch spacing, to be set as 2p/w

Nb:Number of bunches

Same coherence factor but narrower band width

Coherent factor as a function of frequency for 1-16 bunches

(Credit: Cialdi et al., Appl. Phys. 46, 4959 (2007))

Number of pulses= 2n, n is the number of birefringence crystals

Electrons

Laser

Gun

- Need high duty factor, kHz to MHz
- Laser power of 100 W
- Klystron power: 10 kW

L/S band gun

Klystron

Laser

Coherence fator at harmonics

(Credit: Scott Berg, http://www.cap.bnl.gov/spexp/)

Resonant wavelength

Radiation power per electron

Ng, lg: number of grating grooves and grating period.

le:evanescent wavelength

n: diffraction order

S.J. Smith and E. M. Purcell, Phys. Rev. 92, 1069 (1953).

P.M. van den Berg, J. Opt. Soc. Am. 63, 1588 (1973).

Electrons

Laser

Gun

grating

THz

total radiation power as a function of the beam center-grating distance with a beam scraper height D in mm measured from the grating surface.

- We showed that with coherence enhancement, a beam based source delivering hundreds of watts of THz power is possible and may be made compact for field application tools.

Can we make a THz source like this?

http://www.tfot.info/news/1051/boeing-tests-avenger-solid-state-laser-weapon.html

- B. Ferguson and X.C. Zhang, Nature Materials 1, 26 (2002).
- K. Kawase, J. Shikata, K. Imai, and H. Ito, Appl. Phys. Lett. 78, 2819 (2001).
- See, for example, D. Abbott and X.-C Zhang, Proc. IEEE 95, 1509 (2007) and the references therein.
- G.L. Carr, M.C. Martin, W.R. McKinney, K. Jordan, G.R. Neil, and G.P. Williams, Nature 420, 153 (2002).
- S.V. Miginsky, N.A. Vinokurov, D.A. Kayran, B.A. Knyazev, E.I. Kolobanov, V.V. Kotenkov, V.V. Kubarev, G.N. Kulipanov, A.V. Kuzmin, A.S. Lakhtychkin, A.N. Matveenko, L.E. Medvedev, L.A. Mironenko, A.D. Oreshkov, V.K. Ovchar, V.M. Popik, T.V. Salikova, S.S. Serednyakov, A.N. Skrinsky, O.A. Shevchenko, M.A. Scheglov, Proc of 2007 Asian Patical Accelerator Conference, Indore, India.
- J.S. Nodvick and D.S. Saxon, Phys. Rev. 96, 180 (1954).
- Y.K. Batygin, Phys. Plasmas 8, 3103 (2001).
- B.J. Siwick, J.R. Dwyer, R.E. Jordan, R.J.D. Miller, J. Appl. Phys. 92, 1643 (2002).
- A.M. Michalik and J.E. Sipe, J. Appl. Phys. 99, 054908 (2006).
- Y.Li and K.-J. Kim, Appl. Phys. Lett. 92, 014101 (2008).
- S.E. Korbly, A.S. Kesar, J.R. Sirigiri, and R.J. Temkin, Phys. Rev. Lett. 94, 054803 (2005).
- M. Arbel, A. Abramovich, A. L. Eichenbaum, A. Gover, H. Kleinman, Y. Pinhasi, and I. M. Yakover, Phys. Rev. Lett. 86, 2561 (2001), and references therein.
- http://www.pulsar.nl/gpt.
- http://tesla.desy.de/~lfroehli/astra/
- S.J. Smith and E. M. Purcell, Phys. Rev. 92, 1069 (1953).
- P.M. van den Berg, J. Opt. Soc. Am. 63, 1588 (1973).
- H.L. Andrews and C.A. Brau, Phys. Rev. ST AB 7, 070701 (2004).
- M. Boscolo, M. Ferrario,I. Boscolo, F. Castelli, and S. Cialdi, Nucl. Instr. and Meth. Phys. Res. A 577(3), 409 (2007).
- J.G. Neumann, P.G. O'Shea, D. Demske, W.S. Graves, B. Sheehy, H. Loos and G.L. Carr, Nucl. Instr. Meth. Phys. Res. A 507, 498 (2003).
- B. Dromey, M. Zepf, M. Landreman, K. O'Keeffe, T. Robinson, and S. M. Hooker, Appl. Opt. 46, 5142 (2007).
- D.H. Dowell, F.K. King, R.E. Kirby, J. F. Schmerge, and J.M. Smedley, Phys. Rev. ST-AB 9, 063502 (2006).
- T. Srinivasan-Rao, I. Ben-Zvi, J. Smedley, X.J. Wang, M. Woodle, Proc. PAC 97, 2790 (1998).
- F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, Opt. Lett. 30, 2754 (2005).
- P. Dupriez, C. Finot, A. Malinowski, J.K. Sahu, J. Nilsson, D.J. Richardson, K.G. Wilcox, H.D. Foreman, and A.C. Tropper, Opt. Express 14, 9611 (2006).
- D.N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, and P. Georges, Opt. Lett. 32, 2520 (2007)
- D.H. Dowell, J.W. Lewellen, D. Nguyen, and R. Rimmer, Nucl. Instrum. Meth. Phys. Research A 557, 61 (2006).
- A. Todd, Nucl. Instrum. Meth. Phys. Research A 557, 36 (2006).
- M. Cornacchia, S. Di Mitri, and G. Penco, and A.A. Zholents, Phys. Rev. ST-AB 9, 120701 (2006), and reference therein.