1 / 25

Байкальский нейтринный эксперимент

Байкальский нейтринный эксперимент. Г.В.Домогацкий. 23 декабря 2009г . Москва. 1. Коллаборация БАЙКАЛ. Институт Ядерных Исследований РАН , Москва , Россия Иркутский Государственный Университет , Иркутск , Россия Научно Исследовательский Институт Ядерной Физики

lane
Download Presentation

Байкальский нейтринный эксперимент

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Байкальский нейтринный эксперимент Г.В.Домогацкий 23 декабря 2009г. Москва 1

  2. Коллаборация БАЙКАЛ Институт Ядерных Исследований РАН, Москва, Россия Иркутский Государственный Университет, Иркутск, Россия Научно Исследовательский Институт Ядерной Физики МГУ, Москва, Россия 4. DESY-Zeuthen, Zeuthen, Germany. 5. Объединенный Институт Ядерных Исследований, Дубна, Россия 6. Нижегородский Государственный Технический Университет, НижнийНовгород, Россия С. Петербургский Государственный Морской Технический Университет,С. Петербург, Россия 8. Курчатовский Институт, Москва, Россия

  3. ANTARES NT200+/Baikal-GVD (~2017) KM3NeT (~2017) A N N Amanda/IceCube (~2011) 59 Strings in operation

  4. High Energy neutrino telescopes(optical) 2009 August 20 Lepton Photon 2009 Per Olof Hulth Lepton Photon 2009 Per Olof Hulth 4

  5. Status of NT200+ NT200+ is operating now in Baikal lake (~10 months/yr. persistent data taking) Quasar photodetector (=37cm) LAKE BAIKAL NT200: 8 strings (192 optical modules ) Height x  = 70m x 40m, Vinst=105m3 Effective area: 1 TeV~2000m² Eff. shower volume: 10 TeV~ 0.2 Mton ~ 3.6 km to shore, 1070 m depth NT200+ = NT200 + 3 outer strings (36 optical modules) Height x  = 210m x 200m, Vinst = 5106m3 Eff. shower volume: 104 TeV ~ 10 Mton

  6. ANTARES Installation: Junct.Box - Dec 2002 Line 1 - March 2006 Line 5-10 - Dec 2007 Line 11-12- May 2008 900 Optical modules 12 lines 25 storeys / line 3 PMTs / storey <- 40 km 2500 m depth Lepton Photon 2009 Per Olof Hulth 6 2009 August 20 Lepton Photon 2009 Per Olof Hulth

  7. Deployed strings IceCube timeline In the ice: 2005: 1 string 2006: 9 strings 2007: 22 strings (publishing) 2008: 40 strings (analyzing) 2009: 59 strings (running) (includes 1 DeepCore string) Planned: 2010: 77 strings (includes 6 DeepCore strings) 2011: 86 strings (includes 6 DeepCore strings) 15-year design lifetime Lepton Photon 2009 Per Olof Hulth 2009 August 20 Lepton Photon 2009 Per Olof Hulth 7

  8. ПЛАН - 2009 • Регламентные работы на детекторе НТ200+ • Разработка и испытания прототипа гирлянды глубоководных регистрирующих модулей и элементов системы управления кластера детектора НТ1000 • Набор и анализ данных детектора НТ200+ • Работа над проектом гигатонного детектора НТ1000 (BAIKAL-GVD)

  9. Scientific Program NT200 + Magnetic Monopoles Atmospheric muon background Atmosphericneutrinos WIMP from the Sun WIMP from the Earth Center WIMPs in the Sun WIMPs in the Earth Center Diffuseneutrinoflux Neutrinosfrom GRB Local neutrino sources, Diffuse neutrino flux

  10. Neutrinos from WIMPs annihilation in the Sun and Earth Sun Earth Events within diff. cones around nadir 1038 live-days data sample Sun-mismatch angle distribution 1008 live-days data sample - 48 events selected - 56.6 expected from atm. muons with oscillations and - 73 - without osc. Baikal NT200: 1998-02, hard No excess of events above atm. BG AMANDA-II’2001, hard Baksan’1997 MACRO’1998 Limits on muon flux Limits on muon flux 90% c.l. limit on excess muon flux (mc > 100 GeV): F< 3x103 km-2 yr1 90% c.l. limit on excess muon flux (mc > 100 GeV): F < 1.2x103 km-2 yr-1 Super-K’2001 IceCube-22’2007, hard

  11. GRB Neutrino Search Search for direction + time correlations with 303 GRBs observed by BATSE in 1998-2000, using the upward-going muon data sample. “Green’s function” Upper Limits on GRB neutrino fluence (model independent) Time window: (tGRB + T90 +5s) -(tGRB-5s) Half angle of observation cone: Ψ = 5o Observed number of events – 1 event Expected number of bg. events – 2.7 events SK Baikal NT200 Amanda-II 11

  12. Claster Str. section 315 - 460 m GVD - Preliminary design Layout: ~2300 Optical Modules, 96 Strings, 12 Clusters String comprises 24 OMs, which are combined in 2 independent Sections Cluster contains 8 strings Instrumented volume: 0.4 – 0.6 km3 Detection Performance Cascades (E>100 TeV):Veff ~0.3–0.8 km3 δ(lgE) ~0.1, δθmed~ 4o Muons(E>10 TeV): Seff ~ 0.2 – 0.5 km2 δθmed~ 0.5o-1o

  13. Optimisation of GVD configuration (preliminary) Parameters for optimization: Z – vertical distance between OM R – distance between string and cluster centre H – distance between cluster centres Trigger:coincidences of any neighbouring OM on string (thresholds 0.5&3p.e.) PMT:R7081HQE,10”, QE~0.35 The compromise between cascade detection volume and muon effective area: H=300 m R = 60 m Z = 15 m R=60 m R=80 m R=100 m Muon effective area

  14. GVD – R&D (2006-2009) OM Section String Cluster 12 OMs 2 Sections 8 Strings Shore GVD - Key Elements and Systems: - Optical Module - FADC-readout system - Section Trigger Logics - Calibration - Data Transport - Cluster Trigger System, DAQ - Data Transport to Shore

  15. GVD prototype string (2008 – 2009) In-situ tests of basic elements of GVD measuring system with prototypes strings BEG SM BEG PC NT200+ with experimental string String communication center Optical module

  16. Basic parameters of prototype string String length: 110 m Number of Optical Modules: 12 Number of Sections: 2 Number of FADC channels: 12 PMT: Photonis XP1807 (12”) : 6 Hamamatsu R8055(13”) : 6 FADC Time Window: 5 ms FADC frequency: 200 MHz • Data analysis in progress now • Monitoring of the optical module operation. • Test the string operation with LED and LASER. • Experimental material: April – Jun 2009

  17. GVD – R&D (2006-2009) Cluster of strings 8 Strings String – 2 sections (2×12 OM) Cluster DAQ Centre: - PC-module with optical Ethernet communication to shore (data transmission and cluster synchronization) - Trigger module with 8 FADC channel for the measure of string trigger time; - Data communication module – 8 DSL-modems, modem data flaw up to 7 Mbit/s for 1 km. - Power control system Calibration system Two Lasers Cluster DAQ center Synchronization – common signal “Acknowledgement” for all strings.

  18. GVD – R&D (2006-2009) OM, Front-end Electronics OM PMT12 PMT1 BEG 90 m coax. cable 90 m coax. cable The new generation Baikal Optical Module PM: XP1807(12”), R8055(13”)‏, R7081HQE(10”) QE ~0.24 QE ~0.2 QE~0.35 HV unit: SHV12-2.0K,TracoPower OM controller: monitoring, calibration, and PMT control; Amplifier: Kamp = 10 Amplifier FADC 12 Amplifier FADC 1 … Measuring channels From the analogue signal to digital data (wave-form) BEG (FADC Unit): - 3 FADC-board: 4-channel, 12 bit, 200 MHz; - OM power controller ; - VME controller: trigger logic, data readout from FADC, and connection via local Ethernet Kdin~107

  19. GVD – R&D (2006-2009) String Section – basic cell of the Cluster • Section consist of: • - 12 Optical Modules • - BEG with 12 FADC channels • Service Module (SM) with LEDs for OM calibration, string power • supply, and acoustic positioning system. • Trigger:coincidences of neighbouring OM (thresh. ~0.5&3 p.e.) • expected count rate ~ 100 Hz • Communication: DSL-modem: expected dataflow ~0.5Mbit/s • (only time intervals containing PMT pulses are transmitted)

  20. Time resolution of measuring channels (in-situ tests) LED flasher produces pairs of delayed pulses. Light pulses are transmitted to each optical module (channel) via individual optical fibres. Delay values are calculated from the FADC data. Measured delay dT between two LED pulses LED2 LED1 dT (Expected)=497.5 ns <dT (Experiment) > = 498.3 ns <(dT) >= 1.6 ns Example of a two-pulse LED flasher event (channel #5) LED1 and LED 2 pulse amplitude

  21. Time accuracy of measuring channels In-situ test with Laser Time accuracy T  (time resolution) & (accuracy of time calibration with LED flasher) Test with LASER T = <dTLASER – dTEXPECTED> dTEXPECTED = (r2-r1)cwater dTLASER - time difference between two channels measured for Laser pulses (averaged on all channel combinations with fixed (r2-r1)) OM#1 OM#2 OM#3 Differences between dT measured with Laser and expected dT in dependence on distances between channels dr OM#4 OM#5 OM#6 110 m OM#7  T < 3 ns OM#8 OM#9 r1 OM#10 OM#11 OM#12 r2 LASER 97m T distribution on channel combination

  22. Schedule and Cost: >2006Activity towards the Gigaton Volume Detector 2008-09Prototype String ( test of GVD key elements and systems) 2010 Technical Design Report 2010-12Preparatory Phase, Prototype of Cluster (in-situ test) 2011-16 Fabrication(OMs, cables, connectors, electronics) 2012-17Construction(0.2 0.4 0.6 0.8 1.0) GVD

  23. Physics with cascades Flux composition from astrophysical sources at Earth: ~ 1:1:1 • Neutrino Flux Composition (flavor content) • Energy spectrum: • Global anisotropy (extragalactic sources) • Local anisotropy (Galactic plane) • Point sources (complimentary to muons) • Transient sources (GRB, …): time + space correlation with g-rays – relax the cuts ne: En ~ Ecas nm: En ~ Em+Ecas (contained events) nt: En ~ Ecas

  24. Monitoring of Optical Module operation • OM monitoring parameters: • PMT high voltage; • PMT count rate; • Temperature; • OM low voltages: 12 V, 5 V, -5 V … Example of PMT count rate monitoring OM3 OM5 OM temperature Example of PMT voltage monitoring PMT voltage :

More Related