slide1
Download
Skip this Video
Download Presentation
WUJUD ZAT

Loading in 2 Seconds...

play fullscreen
1 / 61

WUJUD ZAT - PowerPoint PPT Presentation


  • 526 Views
  • Uploaded on

WUJUD ZAT. Oleh A. Sjaifullah. Kimia adalah. Pengetahuan yang mempelajari materi dan perubahannya. Materi adalah. Apapaun yang memiliki massa dan menempati ruang. Teori Kinetik. Semua partikel (atoms, molekul dan ion) menyusun materi selalu bergerak secara random dan berinteraksi.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' WUJUD ZAT' - landon


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

WUJUD ZAT

Oleh

A. Sjaifullah

slide2

Kimia adalah

Pengetahuan yang mempelajari materi dan perubahannya

Materi adalah

Apapaun yang memiliki massa dan menempati ruang

slide3

Teori Kinetik

Semua partikel (atoms, molekul dan ion) menyusun materi selalu bergerak secara randomdan berinteraksi

wujud zat
Wujud zat
  • Cara menyusun partikel
  • Energi partikel
  • Interaksi/jarak antar partikel
slide5

Karakteristik wujud zat

Sifat partikel

wujud

Proximity

Energy

gerakan

Volume

bentuk

padat

close

little

vibrational

definite

definite

cair

close

moderate

rotational

definite

indefinite

gas

far apart

a lot

translational

indefinite

indefinite

slide6

Jika kondisi partikel (susunan, interaksi dan energi) diubah,

maka terjadi perubahan wujud

posisi partikel-partikel zat cair & gas tidak tetap,

Zat cair dan gas dapat dialirkan/berdifusi =(fluida)

Perubahan wujud terjadi dalam siklus air di alam

slide7

Sifat-sifat gas

Salah satu sifat gas adalah dapat memberikan tekanan.

Tekanan gas terjadi akbat dari tumbukan partikel-partikel gas dengan dinding

Tekanan yang disebabkan oleh campuran gas-gas yang ada di udara disebut tekanan atmosfir

Tekanan adalah…..

slide8

Rasakan adanya tekanan gas!!

  • Mengapa tekanan udara sangat penting?
      • Adanya angin
      • Menciptakan mendung dan awan
slide11

Korek gas, hair spray, tabung LPG akan terasa lebih dingin jika digunakan,

Karena……………..

slide12

Karena partikel gas hampir tidak berinteraksi satu sama lain, jumlah partikel (molekul) gas hanya bisa ditentukan/diukur pada volume, tekanan dan suhu tertentu

properties of liquids
Properties of Liquids
  • Surface tension: the energy required to increase the surface area of a liquid by a unit amount.
  • Viscosity: a measure of a liquid’s resistance to flow.
slide20

ZAT PADAT

Karena interaksi yang kuat, posisi partikel-partikel dalam zat padat tidak berubah terhadap satu dengan yang lain

Amorf

Kristal

comparison amorphous solids
Comparison: Amorphous solids

Tar, molten glass, molten plastics, and molten butter, consist of large molecules or a mixture of molecules that cannot move readily. As the temperature is lowered, their molecules move more and more slowly and finally stop in random positions. The resulting materials are called amorphous solids or glasses. Such solids lack an ordered internal structure. Common examples include candle wax, butter, glass, and plastics.

slide22
Crystals are classified into systems based on the angle their bonds form.

*7 common systems

Isometric, Hexagonal, Tetragonal, Trigonal, Triclinic, Monoclinic, Orthorhombic

what crystal system does this mineral belong to why
What crystal system does this mineral belong to? Why?
  • Hexagonal
  • 3 equilateral axes intersect at angels of 60o , 1 vertical axis intersect at 90o to equilateral axes.
  • Hexa-six

Quartz

Beryl

http://www.minerals.net/glossary/glossary.htm

what crystal system does this mineral belong to why1
What crystal system does this mineral belong to? Why?

GYPSUM

MONOCLINIC

  • 3 unequal axes and 1 unequal intersection that is not at 90o
  • Mono-one

http://www.minerals.net/glossary/glossary.htm

what crystal system does this mineral belong to why2
What crystal system does this mineral belong to? Why?

Sugar

Isometric

  • 3 axes are at right angles, all sides equal length.
  • Iso- same

http://www.minerals.net/glossary/glossary.htm

what crystal system does this mineral belong to why3
What crystal system does this mineral belong to? Why?

Tetragonal

  • 3 axes are at right angels, only 2 lateral axes are equal length and it has 4 sides.
  • Tetra-four

WULFENITE

http://www.minerals.net/glossary/glossary.htm

what crystal system does this mineral belong to why4
What crystal system does this mineral belong to? Why?

ORTHORHOMBIC

  • 3 unequal axes all at right angles to each other
  • Ortho-unequal

TANZANITE

http://www.minerals.net/glossary/glossary.htm

what crystal system does this mineral belong to why5
What crystal system does this mineral belong to? Why?

Amazonite

Trigonal

  • 3 equal length axes, 3 equal intersections (not 90o)
  • Tri- three

Note:

Hexagonal but with 3 sides not 6

http://www.minerals.net/glossary/glossary.htm

what crystal system does this mineral belong to why6
What crystal system does this mineral belong to? Why?

Triclinic

  • 3 unequal axes and 3 unequal intersections not at 90o
  • Tri-three

http://www.minerals.net/glossary/glossary.htm

slide30

Using your 3-D structures identify the following into rightful system:

Picture 1

Isometric

Picture 2

Tetragonal

Picture 3

Hexagonal

Picture 4

Trigonal

Picture 5

ORTHORHOMBIC

Picture 6

MONOCLINIC

Picture 7

TRICLINIC

crystal systems
Crystal Systems

System Axes Angles Unique Symmetry Diagram Examples

Isometrica=b=c===90° Four 3-fold Pyrite, Halite, Galena, Garnet, Diamond, Fluorite

Tetragonala=bc===90° One 4-fold Wulfenite, Rutile, Zircon, Chalcopyrite

Hexagonala=bc=120°, ==90° One 6-fold Quartz, Beryl (Emerald), Apatite, Corundum (Ruby, Sapphire)

Orthorhombicabc===90° Three 2-fold Sulfur, Barite, Olivine, Topaz

Monoclinicabc==90°, 90° One 2-fold Orthoclase, Malachite, Azurite, Mica, Gypsum , Talc

Triclinicabc90° None Turquoise, Kyanite, Albite, Plagioclase

crystal systems1
Crystal Systems

System Axes Angles Unique Symmetry Diagram Examples

Isometric

Tetragonal

Hexagonal

Orthorhombic

Monoclinic

Triclinic

some definitions
SOME DEFINITIONS …
  • Lattice: 3D array of regularly spaced points
  • Crystalline material: atoms situated in a repeating 3D periodic array over large atomic distances
  • Amorphous material: material with no such order
  • Hard sphere representation: atoms denoted by hard, touching spheres
  • Reduced sphere representation
  • Unit cell: basic building block unit (such as a flooring tile) that repeats in space to create the crystal structure; it is usually a parallelepiped or prizm
simple cubic structure sc
SIMPLE CUBIC STRUCTURE (SC)
  • • Cubic unit cell is 3D repeat unit
  • Rare (only Po has this structure)
  • • Close-packed directions (directions along which atoms touch each other)
  • are cube edges.

• Coordination # = 6

(# nearest neighbors)

(Courtesy P.M. Anderson)

atomic packing factor
ATOMIC PACKING FACTOR
  • Fill a box with hard spheres
    • Packing factor = total volume of spheres in box / volume of box
    • Question: what is the maximum packing factor you can expect?
  • In crystalline materials:
    • Atomic packing factor = total volume of atoms in unit cell / volume of unit cell
    • (as unit cell repeats in space)
atomic packing factor1
ATOMIC PACKING FACTOR

a

R=0.5a

close-packed directions

contains 8 x 1/8 =

1

atom/unit cell

Adapted from Fig. 3.19,

Callister 6e.

Lattice constant

• APF for a simple cubic structure = 0.52

body centered cubic structure bcc
BODY CENTERED CUBIC STRUCTURE (BCC)

• Coordination # = 8

Adapted from Fig. 3.2,

Callister 6e.

(Courtesy P.M. Anderson)

• Close packed directions are cube diagonals.

--Note: All atoms are identical; the center atom is shaded

differently only for ease of viewing.

atomic packing factor bcc
ATOMIC PACKING FACTOR: BCC

Adapted from

Fig. 3.2,

Callister 6e.

• APF for a body-centered cubic structure = p3/8 = 0.68

face centered cubic structure fcc
FACE CENTERED CUBIC STRUCTURE (FCC)

• Coordination # = 12

Adapted from Fig. 3.1(a),

Callister 6e.

(Courtesy P.M. Anderson)

• Close packed directions are face diagonals.

--Note: All atoms are identical; the face-centered atoms are shaded

differently only for ease of viewing.

atomic packing factor fcc
ATOMIC PACKING FACTOR: FCC

Adapted from

Fig. 3.1(a),

Callister 6e.

• APF for a body-centered cubic structure = p/(32) = 0.74

(best possible packing of identical spheres)

fcc stacking sequence
FCC STACKING SEQUENCE

• FCC Unit Cell

• ABCABC... Stacking Sequence

• 2D Projection

hexagonal close packed structure hcp
HEXAGONAL CLOSE-PACKED STRUCTURE (HCP)

Ideally, c/a = 1.633 for close packing

However, in most metals, c/a ratio deviates from this value

hexagonal close packed structure hcp1
HEXAGONAL CLOSE-PACKED STRUCTURE (HCP)

• ABAB... Stacking Sequence

• 3D Projection

• 2D Projection

Adapted from Fig. 3.3,

Callister 6e.

• Coordination # = 12

• APF = 0.74, for ideal c/a ratio of 1.633

states of matter
STATES OF MATTER
  • The Four States of Matter
  • Four States
  • Solid
  • Liquid
  • Gas
  • Plasma
kinetic theory of matter
Kinetic Theory of Matter

Matter is made up of particles which are in continual random motion.

states of matter solids
STATES OF MATTERSOLIDS
  • Particles of solids are tightly packed, vibrating about a fixed position.
  • Solids have a definite shape and a definite volume.

Heat

states of matter liquid
STATES OF MATTERLIQUID
  • Particles of liquids are tightly packed, but are far enough apart to slide over one another.
  • Liquids have an indefinite shape and a definite volume.

Heat

states of matter gas
STATES OF MATTERGAS
  • Particles of gases are very far apart and move freely.
  • Gases have an indefinite shape and an indefinite volume.

Heat

states of matter plasma
STATES OF MATTERPLASMA
  • A plasma is an ionized gas.
  • A plasma is a very good conductor of electricity and is affected by magnetic fields.
  • Plasmas, like gases have an indefinite shape and an indefinite volume.
  • Plasma is the
  • common state
  • of matter
states of matter1
STATES OF MATTER

LIQUID

PLASMA

SOLID

GAS

Tightly packed, in a regular pattern

Vibrate, but do not move from place to place

Close together with no regular arrangement.

Vibrate, move about, and slide past each other

Well separated with no regular arrangement.

Vibrate and move freely at high speeds

Has no definite volume or shape and is composed of electrical charged particles

ad