1 / 16

Heidelberg, 05.03.-09.03.2007

A recoil detector to identify hard exclusive reactions at the HERMES experiment. Die Deutsche Physikalische Gesellschaft e.V. (DPG) Fachverband Teilchenphysik T 510 Detektorsysteme I. Roberto Francisco Perez Benito. Heidelberg, 05.03.-09.03.2007. Outline. Spin of the nucleon DVCS at HERMES

lainey
Download Presentation

Heidelberg, 05.03.-09.03.2007

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A recoil detector to identify hard exclusive reactions at the HERMES experiment Die Deutsche Physikalische Gesellschaft e.V. (DPG) Fachverband Teilchenphysik T 510 Detektorsysteme I Roberto Francisco Perez Benito Heidelberg, 05.03.-09.03.2007

  2. Outline • Spin of the nucleon • DVCS at HERMES • How to improve DVCS measurements • Recoil Detector • Description • Performance

  3. Spin of the nucleon • Spin of quarks • Spin of gluons • Orbital angular momentum of quarks • Orbital angular momentum of gluons ~ 30%! How to access?

  4. Generalized Parton Distributions Study of hard exclusive processes leads to a new class of PDFs Generalized Parton Distributions possible access to orbital angular momentum exclusive: all products of the reaction are detected missing energy (DE) and missing Mass (Mx) = 0 from DIS HERMES ΔΣ =0.330±0.011(theo.)±0.025(exp.)±0.028(evol.) A.Airapetian et al, Phys. Rev. D75(2007)012007

  5. DVCS at HERMES HERMES kinematics: BH c.s. >> DVCS c.s. two experimentally undistinguishable processes: Same initial and final state DVCS DVCS BH Bethe-Heitler (BH) DVCS can be accessed via azimuthal asymmetries

  6. Events selection without Recoil Detector Associated Bethe Heiler: Exactly one lepton track and one trackless cluster No proton detected but reconstructed via missing mass: from Monte Carlo

  7. Can we detect the recoil proton? DVSC/BH recoil protons with lepton and γin the forward spectrometer Proton momentum: P < 1400 MeV/c Polar angle: Θ < 1.35 rad

  8. HERMES + Recoil Detector γ Hadrons Recoil proton e´

  9. Recoil Detector Kinematic detection of the recoiling proton P ∈[135 – 1200] MeV/c SFT p 76%  acceptance SFT 1 π/p PID via dE/dx SFT 2 background suppression SSD Frame semi-incl.: 5 %<<1% associated: 11%~1% SSD Hybrid SSD Connectors 1 TESLA magnetic field improved exclusivity improved t-resolution

  10. Silicon Strip Detector (SSD) • 2 layers of double sided TRIGER sensors operate in beam vacuum • strips , pitch=758μm, thickness=300 μm • HELIX chips with high and low gain • Helix chips was disagne in Heidelberg • Proton momentum: 135-500 MeV/c

  11. Scintillating Fiber Tracker (SFT) • p-measurement 250-1300 MeV/c • π/p PID from dE/dx for p<700 MeV/c • 2 cylinders of 2x2 layers, 10° stereo angle • 1mm Kuraray fibers, mirrored ends and double cladding • PMT Hamamatsu H7546B • 5120 channels total 42 (36) inner (outer) modules1318 (1320) fibers in inner parallel (stereo) sub-barrel2198 (2180) fibers in outer parallel (stereo) sub-barrel

  12. Photon Detector (PD) • 3 layers tungsten-scintilator:A layer parallel to beam line,B and C layer stereo under +45°/-45° • Strips: 2x1x28cm³ • Use the same PMTs to the SFT • Main function • 1γ from π° decay • Reconstruct π° if 2 γ‘s detected

  13. E-P elastic scattering in Photon Detector Selection of elatic protons by making cuts on the momentum of the lepton detcted by the forward spectrometer.

  14. E-P elastic scattering inScintillating fiber tracker Ep elastic scattering Select again elacstic candidate tracks in the forward spectrometer.Look at tracks reconstructed in SFT detector. Resolution meets specifications.

  15. E-P elastic scattering in Silicon Strip Detector Difference between reconstructed azimuthal angle from particule detected in the silicon by the forward spectrometer and by the silicon detector Single lepton in foward spectrometer + single track reconstructed in silicon Mean 0.066±0.016Sigma 2.436±0.014 Difference between z-vertex reconstructed from silicon and the forward spectrometer

  16. Conclusion • Recoil Detector: successfully installed • SSD,SFT & PD: fully commisioned and taking data until the end of HERA – June, 2007 • With the recoil detector, DVCS and other hard exclusive reactions can be precisely measured

More Related