1 / 27

Recent results from Belle: Reflections on Beauty

Recent results from Belle: Reflections on Beauty. Kay Kinoshita University of Cincinnati Belle Collaboration. Outline. CP asymmetry in Standard Model B decays and CP Asymmetric e + e - collisions at  (4S) KEKB and Belle: time-dependent measurement Measurement of sin2 f 1 Summary.

lacy
Download Presentation

Recent results from Belle: Reflections on Beauty

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Recent results from Belle:Reflections on Beauty Kay Kinoshita University of Cincinnati Belle Collaboration APR01 APS

  2. Outline • CP asymmetry in Standard Model • B decays and CP • Asymmetric e+e- collisions at (4S) • KEKB and Belle: • time-dependent measurement • Measurement of sin2f1 • Summary K. Kinoshita APR01 APS

  3. Belle Collaboration 274 authors, 45 institutions many nations K. Kinoshita APR01 APS

  4. CP Asymmetry in Standard Model • Weak interaction of quarks (u,c,t), (d,s,b) • {mass <- CKM matrix -> weak} eigenstates • CKM - 3x3, unitary by definition -> 4 free parameters 1-l2/2 ll3A(r-ih) -l 1-l2/2 l2A l3A(1-r-ih) -l2A 1 irreducibly complex -> CP violation a VtdVtb*+VcdVcb*+VudVub*=0 “unitarity triangle” g b K. Kinoshita APR01 APS

  5. CP phenomenology •before 1998: seen only in K system •predicted for b-hadrons in Standard Model, e.g.: B0->ππ B0->rπ first result B0->J/Ks B0->D(*) D(*) B0-> D*π B0->D*r K. Kinoshita APR01 APS

  6. CP Asymmetry of B -> J/y Ks {cc}+{Ks,KL,π0} CP = ±1 • Decays to CP eigenstate: • paths w/wo mixing interfere • CP-dependent oscillation in decay time distributions • No theoretical uncertainty K. Kinoshita APR01 APS

  7. Time measurement at (4S) (4S): CP=-1, conserved until first B decay (t=0) identify b/b {flavor tag} Reconstruct CP=±1 mode @ t=Dt +e- -> (4S) t=0 Dz≈Dtbgc J/y “CP side” ~200 µm  B1 Ks e- e+ B2 flavor tag: e, µ, K±, ... K. Kinoshita APR01 APS

  8. Experimental considerations • B0 lifetime = 1.548±0.032 ps, ct=464±10 µm mixing Dm = 0.47±0.02 ps–1; cT~4.0 mm need to distinguish B0 vs `B0 (flavor tag), high efficiency • True CP asymmetry is diluted: background to CP reconstruction incorrect flavor tag rate vertex resolution • Bottom line: need >few x 10 fb–1 @ (4S) {>107 B events}, vertexing@<40µm, hadron ID, lepton ID multiply by bg for lab length (decay in flight) } Kaons leptons K. Kinoshita APR01 APS

  9. Beams: KEKB bg = 0.425 • s(E*beam) = 2.6 MeV • IP size = 77µm(x) x 2.0µm(y) x 4.0mm(z) • Lmax = 3.4 X 1033 cm–2s–1 (design: 1x1034) • Data (6/1999–12/2000) • Ldt = 10.5 fb–1@(4S), 0.6 fb–1off e– 8.0 GeV 22 mr e+ 3.5 GeV K. Kinoshita APR01 APS

  10. Belle detector Charged tracking/vertexing - SVD: 3-layer DSSD Si µstrip – CDC: 50 layers (He-ethane) Hadron identification – CDC: dE/dx – TOF: time-of-flight – ACC: Threshold Cerenkov (aerogel) Electron/photon – ECL: CsI calorimeter Muon/KL – KLM: Resistive plate counter/iron K. Kinoshita APR01 APS

  11. CP mode reconstruction J/l + l ) B0 J/ Ks(+ )as an example Ks+ 1lepton+1”not-hadron” ~4MeV/c2 Ks mass4 K. Kinoshita APR01 APS

  12. CP mode (continued) • Kinematics for final selection: • DEE*cand–E*beam0 (E*beams0.5/2) • 10-50 MeV res, depends on mode • Mbc (Beam-constrained mass) • Mbc(E*beam2-p*cand2 )0.5 ~3MeV/c2 Signal region ~10MeV K. Kinoshita APR01 APS

  13. J/y KL • • J/y: {tight mass cut} • 1.42<py*<2.00 GeV/c • • KL: {KLM/ECL cluster w/o track, • >1 KLM superlayers (resolution~ 3° (1.5° if ECL)} within 45˚ of expected lab direction • • Require cand to have B mass, calculate momentum in CMS (pB*) (~0.3 GeV for signal) • • backgrounds: random (from data), “feeddown,” known • modes - estimate via MC K. Kinoshita APR01 APS

  14. CP candidates Fully reconstructed modes J/y KL K. Kinoshita APR01 APS

  15. CP candidates - numbers K. Kinoshita APR01 APS

  16. Flavor tagging l- l+ b c s K– D*+ D0 • – high-p lepton (p*>1.1 GeV): b->l- • – net K charge b->K– • – medium-p lepton, b->c-> l+ – soft π b->c{D*+->D0π+} * all into multidimensional likelihood • Significance of CP asymmetry depends on • – tagging efficiency e • – wrong-tag fraction w (measured w data) • - effective efficiency = e(1-2w) π+ K. Kinoshita APR01 APS

  17. Dz: vertex reconstruction • Constrained to measured IP in r-f • • BCP: sz~88 µm (rms) • use only tracks from J/y • • Btag: sz~164 µm (rms) • remaining tracks, excluding Ks; • iterate, excluding tracks w. poor c2/n • resolution includes physics (e.g. charm) • • Overall eff. = 87% m+ m- K- K- K. Kinoshita APR01 APS

  18. Prepare to fit: Wrong tag fraction Bins of dilution parameter (MC) • Same fit method, but • CP->flavor-specific • • BD*-l+n, D(*)-π+, D*-r++flavor tag • • separate same-, opp-flavor events • • fit to Dz: mixing asymmetry, w: • • "effective tagging efficiency" • eeff=S(1-2wl)2etag, l =(27.0±2.2)% • 99.4% of candidates tagged • (good agreement w MC) K. Kinoshita APR01 APS

  19. Dt resolution function • • Double Gaussian, parameters calculated event-by-event, includes effects of • - detector resolution • - poorly measured tracks • - bias from e.g. charm • - approximation of Dt=Dz/bgc • • form, params determined by • - Monte Carlo • - fits for D0K-π+, BD*ln lifetimes tail fraction: 1.8% K. Kinoshita APR01 APS

  20. Verifying Dt resolution • Dt used in other measurements, serve as checks • • B0 mixing w. dileptons • Dmd=0.463±0.008±0.016 ps-1 (5.9 fb–1) PRL86,3228 • (PDG2000: 0.472±0.017 ps-1) • • B lifetimes • Reconstructed B + flavor tag vertex • BDX semileptonic+hadronic modes. • t0=1.56±0.04 ps • (PDG2000: 1.548±0.032 ps) • t+=1.66±0.04 ps • (PDG2000: 1.653±0.028 ps) PRELIMINARY K. Kinoshita APR01 APS

  21. Dt resolution l- l+ b c s • B0 mixing w. dileptons • Same sign • - 2 primaries, mixed event • - Primary+2ndary, unmixed & B+B- • - Backgrounds • Opposite sign • - 2 primaries, unmixed & B+B- • - Primary+2ndary, mixed&unmixed • - Backgrounds • Asymmetry in signal (2 primaries) • Nopp-Nsame • Nopp+Nsame K. Kinoshita APR01 APS

  22. Fitting Dt distribution • • distribution in Dt~Dz/bgc • • unbinned max. likelihood fit, includes • - signal root distribution (analytic) • - wrong tag fraction (const) • - background: right & wrong tag (MC, parametrized) • - detector & tagging resolution • (parametrized,evt-by-evt) K. Kinoshita APR01 APS

  23. Results All modes combined : sin2f1=0.58 +0.32 -0.34 binned in Dt K. Kinoshita APR01 APS

  24. Results likelihood Uncombined results are consistent Fit (stat. err.) Mode Non-CP CP = -1 CP = +1 All CP K. Kinoshita APR01 APS

  25. Systematic errors K. Kinoshita APR01 APS

  26. Result in context sin2f1=0.58 +0.32+0.09 -0.34-0.10 {PRL 86, 2509 (2001)} •Probability of observing sin2f1>0.58 if CP is conserved: 4.9% •Feldman-Cousins confidence interval CKM, from rates K. Kinoshita APR01 APS

  27. Summary/Prospects Successful run of Belle in 2000 Results on • sin 2f1: 10.5 fb–1 on (4S), 282 tagged events • + 17 papers at Osaka ICHEP 2000 • 2 publications, 4 submitted, more soon Next • some improvements to analysis • data as of 4/01 - 20.5 fb–1; anticipate 30 fb–1 by summer • Luminosity: peak 3.41x1033cm–2s–1; 24 hrs 198 pb–1; month 4047 pb–1 • KEKB continuing to improve performance K. Kinoshita APR01 APS

More Related