1 / 27

Hans Burchard, Frank Janssen, Hans Ulrich Lass, Volker Mohrholz, Hannes Rennau, and Lars Umlauf

Status of the QuantAS-Off regional scale dynamical studies. Hans Burchard, Frank Janssen, Hans Ulrich Lass, Volker Mohrholz, Hannes Rennau, and Lars Umlauf Leibniz Institute for Baltic Sea Research Warnemünde, Germany Internal technical support:

lacey
Download Presentation

Hans Burchard, Frank Janssen, Hans Ulrich Lass, Volker Mohrholz, Hannes Rennau, and Lars Umlauf

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Status of the QuantAS-Off regional scale dynamical studies • Hans Burchard, Frank Janssen, Hans Ulrich Lass, • Volker Mohrholz, Hannes Rennau, • and Lars Umlauf Leibniz Institute for Baltic Sea Research Warnemünde, Germany Internal technical support: Toralf Heene, Günter Plüschke, Dietmar Rüss, Ingo Schuffenhauer External scientific collaboration: Lars Arneborg, Karsten Bolding, Volker Fiekas, Frank Gerdes, Michaela Knoll, Hartmut Prandke, Jürgen Sellschopp

  2. Kriegers Flak Motivation: wind farms in the Western Baltic Sea

  3. Western Baltic Sea monitoring stations Farvandsvæsenet Drogden Sill: 8 m + MARNET (IOW/BSH) + Darss Sill: 19 m

  4. Inflows over Drogden Sill baroclinic barotropic surface bottom Source: Farvandsvæsenet

  5. Where does the Sound plume go ? ?

  6. Sound lock-exchange experiment with GETM 5 days 15 days 31 days Bottom salinity: 8 – 25 psu Main plume goes via north of Kriegers Flak: Is this real ? Burchard et al., 2005

  7. Plume passing Kriegers Flak (Feb 2004) For more details, see Sellschopp et al., 2006 Burchard et al., 2005

  8. Baltic Sea vertical mixing processes How would offshore wind farm foundations affect this ? Reissmann et al., 2007

  9. Role of vertical mixing for the Baltic Sea ecosystem

  10. GETM Western Baltic Sea hindcast Burchard et al, 2007

  11. GETM Western Baltic Sea hindcast

  12. GETM Western Baltic Sea hindcast

  13. Model validation: Darss Sill Burchard et al, 2007

  14. Ship A:TL-ADCP Ship B: Microstructure Flow View 1 km Nov 2005: Velocity structure of dense bottom current Arneborg et al., 2007: Entrainment laws for each location Can we explain the flow structure ? East comp. North comp. Umlauf et al., 2007

  15. GETM 2DV Slice Model: Transverse gravity current structure Umlauf et al., in prep.

  16. QuantAS – Quantification of water mass transformations in the Arkona Sea Time series stations Mohrholz et al., in prep. volker.mohrholz@io-warnemuende.de

  17. QuantAS – Quantification of water mass transformations in the Arkona Sea Moored devices Kriegers Flak North Kriegers Flak South Mohrholz et al., in prep. volker.mohrholz@io-warnemuende.de

  18. QuantAS – Quantification of water mass transformations in the Arkona Sea Salinity time series Mohrholz et al., in prep. volker.mohrholz@io-warnemuende.de

  19. QuantAS – Quantification of water mass transformations in the Arkona Sea Inflowing plume north of Kriegers Flak Along channel transect 30.01.2006 11:58 - 22:39 UTC Cross channel transect 30.01.2006 07:50 - 10:49 UTC Mohrholz et al., in prep. volker.mohrholz@io-warnemuende.de

  20. QUANTAS – ADP structure function approach Hydrography at Bornholmsgat Mohrholz et al., in prep.

  21. Transverse structure in Bornholm Channel Reissmann et al., 2007

  22. Model derived monthly mean vertically integrated physically and numerically induced salinity mixing Physical mixing Numerical mixing Burchard et al., 2007; Burchard and Rennau, 2007; Rennau et al., in prep.

  23. Mixing at the piles of the Western Great Belt Bridge Current Salzgehalt Mixing by bridge Signature of piles Temperatur Lass et al., submitted

  24. CTD chain tows at Western Great Belt Bridge upstream downstream Lass et al., submitted

  25. Basic parameterisation for friction due to structures in water Friction coefficient: Additional production of turbulence:

  26. QuantAS-IOW-Publications • Burchard, H., H.U. Lass, V. Mohrholz, L. Umlauf, J. Sellschopp, V. Fiekas, K. Bolding, and L. Arneborg, "Dynamics of medium-intensity dense water plumes in the Arkona Sea", Western Baltic Sea, Ocean Dynamics, 55, 391-402, 2005. • Sellschopp, J., L. Arneborg, M. Knoll, V. Fiekas, F. Gerdes, H. Burchard, H. U. Lass, V. Mohrholz, L. Umlauf, "Direct observations of a medium-intensity inflow into the Baltic Sea", Cont. Shelf Res., 26, 2393-2414, 2006. • Arneborg, L., V. Fiekas, L. Umlauf, and H. Burchard, "Gravity current dynamics and entrainment - a process study based on observations in the Arkona Sea", J. Phys. Oceanogr., 37, 2094-2113, 2007. • Umlauf, L., L. Arneborg, H. Burchard, V. Fiekas, H.U. Lass, V. Mohrholz, and H. Prandke, The transverse structure of turbulence in a rotating gravity current, Geophys. Res. Lett., 34, L08601, doi:10.1029/2007GL029521, 2007. • Mohrholz, V., H. Prandke and H. U. Lass, Estimation of TKE dissipation rates in dense bottom plumes using a Pulse Coherent Acoustic Doppler Profiler (PC-ADP) - Structure function approach, J. Mar. Sys., accepted for publication. • Burchard, H., F. Janssen, K. Bolding, L. Umlauf, and H. Rennau, Model simulations of dense bottom currents in the Western Baltic Sea, Cont. Shelf Res., accepted for publication. • Burchard, H., and H. Rennau, Comparative quantification of physically and numerically induced mixing in ocean models, Ocean Modelling, accepted for publication. • Reissmann, J., H. Burchard, R. Feistel, E. Hagen, H.U. Lass, V. Mohrholz, G. Nausch, L. Umlauf, and G. Wieczorek, State-of-the-art review on vertical mixing in the Baltic Sea and consequences for eutrophication, Progr. Oceanogr., accepted for publication. • Lass, H.U., V. Mohrholz, M. Knoll, and H. Prandke, "On the impact of a pile on a moving stratified flow", Cont. Shelf Res., submitted.

  27. Conclusions: The inflow dynamics of the Arkona Sea are far more complex than assumed before. Specifically the role of Earth rotation for entrainment had been underestimated before. Next steps: Calibration of the friction parameterisation by means of the lab experiments, the RANS experiments and the Great Belt Bridge field observations. Various numerical experiments without and with the parameterisation of different wind farm locations and abundances in the Arkona Sea. Evaluation of the wind farm effects and general recommendations for future wind farm locations.

More Related