1 / 87

Energy and Metabolism

Energy and Metabolism. Chapter 6. Flow of Energy. Energy : the capacity to do work - kinetic energy : the energy of motion - potential energy : stored energy Energy can take many forms: chemical, mechanical , electric current, heat , light. Fig. 6.1. Flow of Energy.

Download Presentation

Energy and Metabolism

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Energy and Metabolism Chapter 6

  2. Flow of Energy • Energy: the capacity to do work -kinetic energy: the energy of motion -potential energy: stored energy • Energy can take many forms: chemical, mechanical, electric current, heat, light

  3. Fig. 6.1

  4. Flow of Energy • Most forms of energy can be converted to heat energy. • Heat energy is measured in kilocalories. • One calorie = the amount of heat required to raise the temp of water by 1oC 1 kilocalorie (kcal) = 1000 calories (Cal.)

  5. Laws of Thermodynamics First Law of Thermodynamics – energy cannot be created or destroyed -energy can only be converted from one form to another For example: sunlight energy chemical energy photosynthesis

  6. Laws of Thermodynamics • Second Law of Thermodynamics: disorder is more likely than order entropy: disorder in the universe • The 2nd Law of Thermodynamics states that entropy is always increasing. • Energy is required to keep order, to do work • keep cells together and organized • perform life processes

  7. Laws of Thermodynamics • Enthalpy: All of the energy contained in a molecule’s chemical bonds • Free energy: the energy available to do work, to reduce disorder (enthalpy) • denoted by the symbol G (Gibb’s free energy) • free energy = enthalpy – (entropy x temp.) G = H - TS

  8. Laws of Thermodynamics • Chemical reactions can create changes in free energy: ΔG = ΔH - T ΔS • When products of chemical reactions contain more free energy than reactants – ΔG is positive. • When reactants contain more free energy than products – ΔG is negative.

  9. Laws of Thermodynamics • Chemical reactions can be described by the transfer of energy that occurs: • endergonic reaction: a reaction requiring an input of energy • ΔG is positive • exergonic reaction: a reaction that releases free energy • ΔG is negative

  10. Laws of Thermodynamics • Most reactions require some energy to get started - activation energy. • activation energy: extra energy needed to get a reaction started -destabilizes existing chemical bonds -required even for exergonic reactions • catalysts: substances that lower the activation energy of a reaction (enzymes)

  11. Flow of Energy • Potential energy stored in chemical bonds can be transferred from one molecule to another by way of electrons. oxidation: loss of electrons reduction: gain of electrons • Redox reactions are coupled to each other.

  12. Oxidation-Reduction Reactions • A chemical reaction that transfers electrons from one atom to another • Oxidation = loss of an electron • Reduction = gain of an electron

  13. Oxidation-Reduction Reactions • Oxidation • A chemical reaction in which a molecule gives up electrons • Oxidation releases energy • The molecule loosing the electron is oxidized 79

  14. Oxidation-Reduction Reactions • Reduction • A chemical reaction in which a molecule gains electrons and energy • The molecule that accepts electrons is reduced • The molecule being reduced receives energy 80

  15. Oxidation-Reduction Reactions • LEO the lion says GER • If it Looses Electrons during the reaction, it’s Oxidized • If it Gains Electrons during the reaction, it’s Reduced

  16. Redox Reactions • Oxidation and Reduction reactions always occur in pairs • If an atom or molecule is reduced, another atom or molecule must have been oxidized • If an atom or molecule is oxidized, another atom or molecule must have been reduced • For this reason Oxidation and Reduction Reactions are known as Redox Reactions

  17. ATP - Energy Currency of Cells • ATP is the molecule that cells use to store, transfer, and provide energy • The energy from ATP is used to fuel anabolic reactions • recall: for growth, repair, and reproduction • ATP = Adenosine TriphosPhate • Adenosine (same molecule from DNA and RNA) + • Three inorganic phosphates (functional group PO4) 21

  18. ATP - Energy Currency of Cells • ATP= adenosine triphosphate • the energy “currency” of cells • ATP structure: • ribose, a 5-carbon sugar • adenine • three phosphates

  19. Photo Courtest of Dr. O’Steen

  20. ATP - Energy Currency of Cells • ATP - 1 PO4 = ADP (Adenosine Diphosphate) • ADP - 1 PO4 = AMP (Adenosine Monophosphate) • ADP + 1 PO4 = ATP 25

  21. Figure 5_12

  22. ATP • ATP is a molecule that is used as an Energy Currency in cells • ATP’s can be broken down to provide energy for endergonic reactions • Cells use energy to build ATP’s • Enzymes of allow cells to efficiently build ATP’s - Cells can make ATP’s for less energy than ATP’s can provide

  23. ATP - Energy Currency of Cells • ATP stores energy in the covalent bonds between phosphates: • Phosphates are highly negative, therefore: • the phosphates repel each other • much energy is required to keep the phosphates bound to each other • Energy is released when the bond between two phosphates is broken

  24. Energy Currency of Cells • When the bond between phosphates is broken: ATP ADP + Pi energy is released • ADP = adenosine diphosphate • Pi = inorganic phosphate • This reaction is reversible...

  25. Text art 5_06 ATP/ADP Cycling

  26. Energy Currency of Cells • When the bond between phosphates is formed: ADP + Pi ATP energy is consumed • ATP - ADP Cycle

  27. Text art 5_07 ATP/ADP Cycling

  28. Energy Currency of Cells • It costs energy to build ATPs ADP + 1PATP (Adenosine Diphosphate +1 phosphate)

  29. ATP/ADP Cycling ATP ADP

  30. Energy Currency of Cells • The energy released when ATP is broken down to ADP can be used to fuel endergonic reactions. • The energy released from an exergonic reaction can be used to fuel the production of ATP from ADP + Pi.

  31. Other Functions of ATP • ATP regulates enzyme activity • Phosphorylation and dephosphorylation - process of adding or removing phosphate groups - can activate or deactivate enzymes • ATP serves as a source of phosphate groups 38

  32. ATP/ADP Cycling

  33. Enzymes • Enzymes: molecules that catalyze - speed up - biochemical reactions in living cells • Three rules to be considered an enzyme • Most are proteins (some RNA enzymes) • Lower the energy of activationrequired for a reaction to occur • Are not changed or consumed by the reaction • Cofactors, Coenzymes 40

  34. Metabolism • Enzymes catalyze cellular chemical reactions • Metabolism - the chemical reactions in a cell: • Two categories of cellular chemical reactions: • Anabolic Reactions • Build larger molecules for growth, repair, reproduction • Dehydration Synthesis Reactions • require energy and nutrients • Catabolic Reactions • Breakdown larger molecules • Hydrolysis Reactions • mobilize nutrients for energy making it available to the cell 41

  35. Metabolism • Metabolism is the sum total of all anabolic and catabolic reactions that occur in the cell • The metabolism of cells is carried out and controlled by the enzymes • There are catabolic enzymes – those that cleave larger molecules into smaller ones • Ex. Hydrolysis Reactions • There are also anabolic enzymes – those that assemble smaller molecules into larger ones • Ex. Dehydration Reactions 42

  36. Enzymes • Enzymes interact with substrates. • substrate: molecule that will undergo a reaction • active site:region of the enzyme that binds to the substrate • Binding of an enzyme to a substrate causes the enzyme to change shape, producing a better induced fit between the molecules.

  37. Enzymes Enzymes interact with substrates • Substrates: molecules that will undergo a reaction when bound to the enzyme • lactose, hydrogen peroxide (H2O2) • On the Enzymes: • Active site: region of the enzyme that binds to the substrate • Allosteric site: region of the enzyme that binds substances other that the substrate 44

  38. Figure 5_02

  39. Enzymes • Enzymes are very specific: • Enzymes will only interact with a specific substrates • The substrate fits into the active site like a key fits into a lock (Lock and Key Hypothesis) • Substrate binding causes the enzyme to change shape, producing a better induced fit between the molecules (Induced Fit Hypothesis) • Changing the shape of an enzyme affects its ability to function 46

  40. Enzymes • Enzyme/Substrate Complex: E + S ES EP E + P • The Enzyme and the Substrate come together (E+S) • The Enzyme/Substrate Complex is formed (ES) • The Enzyme’s Substrate is changed to the Enzyme’s • Product in the active site of the enzyme (EP) • The Enzyme and Product Separate (E+P) • The Enzyme is free to bind to another Substrate 48

  41. Figure 5_03b

More Related