1 / 38

LATTICE QCD is FUN

LATTICE QCD is FUN. [1] Lattice QCD basics [2] Nuclear force on the lattice (  dense QCD) [3] In-medium hadrons on the lattice (  hot QCD) [4] Summary. Tetsuo Hatsuda, Univ. Tokyo Second Berkeley School on Collective Dynamics May 21-25, 2007. QGP. QGP. c SB.

kuniko
Download Presentation

LATTICE QCD is FUN

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LATTICE QCD is FUN [1] Lattice QCD basics [2] Nuclear force on the lattice ( dense QCD) [3] In-medium hadrons on the lattice ( hot QCD) [4] Summary Tetsuo Hatsuda, Univ. Tokyo Second Berkeley School on Collective Dynamics May 21-25, 2007

  2. QGP QGP cSB cSB CSC CSC mB In-medium Hadrons ●Asakawa & Yazaki, Nuc. Phys A504 (‘89) 668 ●Yamamoto, Tachibana, Baym & T.H.,Phys. Rev. Lett. 97 (2006)122001

  3. a 1/T L continuum limit 1/T fixed, Nt/Ns small, Nt large  “a” small Lattice setup at finite T 1/T = Nt a L = Ns a

  4. Order of the transition 2nd order (u,d; m=0) 1st order (u,d,s; m=0) crossover (real world) Critical temperature Tc: 160 – 190 MeV ~ 1012 [K] Critical energy density εc: ~ 2 GeV/fm3 ~ 10 εnm Bulk Thermodynamics in full QCD MILC Coll., hep-lat/061001 (2+1)-flavor, O(a2) improved action, Ns/Nt=2

  5. Karsch, hep-lat/0608003 Wuppertal-Budapest Coll., hep-lat/0510084 stout, Ccond/Cnt correction by hand Ns/Nt=3

  6. n-th order transition: non-analiticity starts from e.g. 1st order: P smooth, dP/dT=s discontinuous 2nd order: P smooth, dP/dT=s smooth, (d/dT)2P=ds/dT=cV/T divergent crossover: P(K) is everywhere analytic Susceptibilities What is Phase Transition ?

  7. Fluctuation: chiral susceptibility cm/T2 cm/T2 1/T Wuppertal-Budapest Coll., Nature 443 (2006) Order of the transition in full QCD (Nf=2+1)

  8. 2nd order transition • Relation between c and x, e.g. (3-dimension)

  9. Wuppertal-Budapest Coll., Nature 443 (2006)

  10. n-th order transition: non-analiticity starts from e.g. 1st order: P smooth, dP/dT=s discontinuous 2nd order: P smooth, dP/dT=s smooth, (d/dT)2P=ds/dT=cV/T divergent crossover: P(K) is everywhere analytic Intrinsic ambiguity to define Tpc cm/T2 Pseudo critical temperature Tpc

  11. [MeV] [MeV] Tpc (a 0) in full QCD (Nf=2+1) from cm/T2 Staggered fermion MILC Coll., hep-lat/0405029 169(12)(4)(5) MeV Asqtad, Nt=4,6,8, Ns/Nt=2, r_1=0.317(7) fm RBC-Bielefeld Coll., hep-lat/0608013 192(7)(4) MeV P4fat3, Nt=4,6 Ns/Nt=2-4, r_0=0.469(7) fm Wuppertal-Budapest Coll., hep-lat/0609068 151(3)(3) MeV + 9 MeV stout, Nt=6,8,10, Ns/Nt=4, F_K scale WHOT-QCD Coll., preliminary 175(4)(2) MeV (Nf=2, Nt=6, Polyakov-loop sus.) clover, Nt=4, 6, Ns/Nt=3-4, m_V scale Wilson fermion

  12. Sommer scales r0=0.469 (7) fm,HPQCD-UKQCD Coll. hep-lat/0507013 from bottomonium mass splitting (Nf=2+1, staggered) r0=0.516 (21) fm, CP-PACS-JLQCD Coll., hep-lat/0610050 from ρ-meson mass (Nf=2+1, Wilson) Tpc on the lattice from chain rule

  13. de Forcrand and Phillipsen, hep-lat/0607017 Nf=2+1, Nt=4, standard staggered QGP cSB CSC Critical point Cf. Asakawa & Yazaki, NPA504 (1989) 668 Klimt, Lutz & Weise, PLB249 (’90) 386

  14. Spectral Properties of Hot QCD Shear viscosity in quenched QCD pz h/s pQCD ΛQCD py px AdS/CFT What are the elementary excitations in the plasma? DeTar’s conjecture Phys.Rev.D32 (1985) 276 T T/Tc Quenched Lattce QCD: 24x24x24x8 Nakamura & Sakai, Phys.Rev.Lett.94:072305,2005 & hep-lat/0510100

  15. Dynamic probe Static probe Matsui & Satz, PLB178 (’86)Miyamura et al., PRL57 (’86) Gluon matter (quenched QCD) Quark-gluon matter (full QCD) Heavy probes

  16. r g,u,d,s Singlet free energy in full QCD (Nf=2+1) 163x4, p4fat3 action, mud/ms=0.1 RBC-Bielefeld Coll., hep-lat/0610041

  17. 5 4 free Matsui & Satz, PLB178 (’86)Miyamura et al., PRL57 (’86) r (GeV-1) 3 r g T/Tc=1.53 0.5fm T/Tc=0.93 2 t (GeV-1) Charmonium “wave function”(quenched QCD) QCD-TARO Coll., Phys. Rev. D63 (’01)

  18. ~ Dynamic correlation & The spectral function (SPF) Real-time (Retarded) correlation Imaginary-time (Matsubara) correlation

  19. Lattice QCD data “Laplace” kernel P[A|D] ~ P[D|A] P[A] Maximum Entropy Method T. Bayes C.E. Shannon (1702-1761) (1916-2001) Maximum Entropy Method (MEM) Review + proofs : Asakawa, Nakahara & T.H., Prog. Part. Nucl. Phys. 46 (’01) 459

  20. Why MEM is so powerful ? P[A|D] ~ P[D|A] P[A] • No parameterization necessary for A • Unique solution D A • Error estimate for A possible First application of MEM to LQCD: Asakawa, Nakahara & T.H, Phys. Rev. D60 (’99) 091503 Review + proofs : Asakawa, Nakahara & T.H., Prog. Part. Nucl. Phys. 46 (’01) 459

  21. Image reconstruction by MEM D = K×A D A D A

  22. MEM: mock data

  23. p Wilson doubler p’ r Wilson doubler r’ MEM for mesons at T=0 Asakawa, Nakahara & T.H., PRD60 (‘99) 091503

  24. JP=1/2+ N N’ WD1 WD2 MEM N* N*’ JP=1/2- WD1 WD2 MEM Sasaki, Sasaki and T. H., Phys. Lett. B623 (’05) 208 MEM for baryons at T=0

  25. J/ψ(3.1GeV) • J/ψ survives • even up to 1.6 Tc • 2. J/ψdisappears • in 1.6 Tc < T < 1.7 Tc Spectral function ρ(ω) Asakawa & T.H., PRL 92 (’04) 012001 • see also, • Umeda et al, hep-lat/0401010 • Datta et al., PRD 69 (’04) 094507 • Jakovac et al., hep-lat/0611017 MEM: charmonium above Tc (quenched)

  26. ηc(3.0GeV) J/ψ(3.1 GeV) Spectral function ρ(ω) J/ψ and ηc above Tc (quenched)

  27. at T/Tc= 1.4 ss-channel mφ(T=0)=1.03 GeV A(ω)/ω2 Light meson spectra in quenched QCD mud << ms~Tc << mc < mb Asakawa, Nakahara & Hatsuda, [hep-lat/0208059]

  28. Possible mechanisms of supporting “hadrons” above Tc • Strong correlations • in JP=0+ (σ) and JP=0-(π) channels • above Tc ? • Kunihiro and T.H., Phys. Rev. Lett. 55 (’85) 88 • Dynamical confinement • in all color singlet channels above Tc ? • DeTar, Phys. Rev. D32 (’85) 276 • Strong Coulomb interaction • in color singlet and non-singlet channels • above Tc ? • Shuryak and Zahed, Phys. Rev. D70 (2004) 054507 • Brown, Lee, Rho and Shuryak, Nucl. Phys.A740 (’04) 171

  29. anisotropic lattice, 323 x (96-32) x=4.0, at=0.01 fm, (Ls=1.25fm) isotropic lattice, 483 x(24-12), a=0.04 fm (Ls=1.9 fm) Asakawa & Hatsuda, hep-lat/0308034 Datta, Karsch, Petreczky & Wetzorke, hep-lat/0312034 g g c J/y c hc J/y hc anisotropic lattice, 243 x (160-34) x=4.0, at=0.056 fm, (Ls=1.34 fm) Jakovac, Petreczky, Petrov & Velytsky hep-lat/0611017 Charmonium spectra in quenched QCD h

  30. g,u,d hc J/y Hamber-Wu, stout, ξ=6, at=0.025fm, 83 x (16,24,32), mp/mr=0.5 Aarts et al., hep-lat/0610065, 0705.2198 [hep-lat] Charmonium spectra in full QCD (Nf=2) Net dissociation rate may even be smaller in full QCD Hatsuda, hep-ph/0509306

  31. g J/Y moving in the plasma in quenched QCD g Datta, Karsch, Wissel, Petreczky & Wetzorke, [hep-lat/0409147] Aarts, Allton, Foley, Hands & Kim, [hep-lat/0610061]

  32. anisotropic lattice, 243 x (160-34) x=4.0, at=0.056 fm, (Ls=1.34 fm) Jakovac, Petreczky, Petrov & Velytsky hep-lat/0611017 Bottomonium spectra in quenched QCD quenched, a = 0.02 fm Datta, Jakovac, Karsch & Petreczky, [hep-lat/0603002]

  33. T High Tc superconductor Chen, Stajic, Tan & Levin, Phys. Rep. (’05) weakly int. q + g plasma viscous fluid 3 pz 10 T c q + g plasma ~ 2T * c T q + g +”extra” plasma ? ΛQCD py perfect fluid T c px Resonance gas f T viscous fluid p Pion gas 0 Hot QCD -- a “paradigm” --

  34. 1. Progress in lattice QCD Improved action, Faster algorithm, Faster computer  simulations of the REAL world RHIC LATTICE AdS/CFT HTS/BEC Summary 2. Progress in bulk thermodynamics Equation of state, Pseudo-critical temperature, Susceptibilities  precision science 3. Progress in spectral analysis elementary excitations in QGP  still exploratory 4. Progress in finite density no conclusion yet

  35. Back up slides

  36. Relativistic plasma : Inter-particle distance Electric screening Magnetic screening Debye number : 1/g2T 1/gT 1/T “Coulomb” coupling parameter : S. Ichimaru, Rev. Mod. Phys. 54 (’82) 1071 QGP for g << 1 ( T >> 100 GeV )

  37. A. Linde, Phys. Lett. B96 (’80) 289 EOS : μ ν magnetic screening : “Debye” screening : Kraemmer & Rebhan, Rept.Prog.Phys.67 (’04)351 Non-Abelian magnetic problem QCD is non-perturbative even at T = ∞

  38. soft magnetic gluons are always non-perturbative even if g  0 (T ∞) pertubation theory from O(g6) (wm~ g2T)

More Related