1 / 23

§2.1 矩阵的运算

§2.1 矩阵的运算. 1. 矩阵的加法运算 2. 矩阵的乘法运算 3. 矩阵的乘方运算 4. 矩阵的数量乘法 5. 矩阵的转置运算. 一 矩阵的加法. 矩阵加法 : 1. 具有相同行、列数的矩阵 ( 即同型矩阵 ) 方可相加; 2. 同型矩阵 A, B 的对应元素相加组成同型矩阵 A + B. 例 . 由产地 A 1 , A 2 调运大米和面粉到销地 B 1 , B 2 , B 3 的数量(吨)分别如 A , B 矩阵所示,则调运粮食总 量可以由矩阵如下 A + B 给出 . (见下页).

konala
Download Presentation

§2.1 矩阵的运算

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. §2.1 矩阵的运算 1. 矩阵的加法运算 2. 矩阵的乘法运算 3. 矩阵的乘方运算 4. 矩阵的数量乘法 5. 矩阵的转置运算

  2. 一 矩阵的加法 矩阵加法: 1. 具有相同行、列数的矩阵(即同型矩阵)方可相加; 2. 同型矩阵A, B的对应元素相加组成同型矩阵A+B.

  3. 例. 由产地A1,A2调运大米和面粉到销地B1,B2,B3 的数量(吨)分别如 A,B 矩阵所示,则调运粮食总 量可以由矩阵如下 A+B 给出.(见下页)

  4. 性质5 max{r(A), r(B)}≤r(A, B)≤r(A)+r(B).特别: r(A)≤r(A,β)≤r(A)+1,β为非零列向量. 证明:矩阵A的最高阶非零子式总是(A, B)的非零子式 → r(A)≤r(A, B). 同理可以推出 r(B)≤r(A, B) → max(r(A), r(B))≤r(A, B). 设r(A) = r, r(B) = t, 把A,B分别作列变换化成列阶 梯形矩阵A,B, 则A,B分别含r个和t个非零列,可设 A→A = (α1,···,αr,0, ···, 0);B→B = (β1, ···,βt, 0, ···, 0), 即矩阵(A, B)经过列变换化成为(A,B),而(A,B)中 只含有r+t个非零列 → r(A,B)≤ r+t → r(A, B) = r(A,B)≤ r+t,即 r(A,B) ≤ r+t .

  5. 性质6 r(A + B)≤r(A) + r(B) 证明: 设A,B均为 s×n 矩阵,且 A = (α1, α2, ···, αn), B = (β1, β2, ···, βn). 对矩阵 (A+B, B) = (α1 +β1, α2+ β2, ···, αn+ βn, β1, β2, ···, βn) 作列变换: (-1)×cn+i+ci上,则将矩阵(A+B, B) 化 成矩阵 (A, B), 于是据性质6,就有 r(A+B)≤r(A+B, B) = r(A, B)≤r(A)+r(B). • 矩阵加法满足结合律,交换律;减法作为加法的逆 运算,不是一个独立的运算;矩阵加(减)法中有关秩的 性质5,6是不同于我们以往所学代数运算性质研究的 两个独特的性质,应特别予以重视.

  6. 矩阵乘法: 两矩阵A = (aik),B = (bkj)相乘为AB = (cij) • A的列数 = B的行数,两矩阵A,B方可相乘; • AB的第 i 行、第j列元素cij等于A的第 i 行与B的第 j列 • 对应元素乘积的和 .

  7. 实例:将直角坐标系xoy旋转θ度到x1oy1,再旋转φ度到x2oy2 . 设M点在三个坐标系下的坐标依次为(x,y),(x1,y1),(x2,y2),利用平面解析几何的坐标旋转公式有 x ·M y1 y2x2 x1 θφ x Y

  8. 作业:P22:1,2,5,6,7

More Related