This presentation is the property of its rightful owner.
Sponsored Links
1 / 115

第二章 随机变量及其分布 PowerPoint PPT Presentation


  • 172 Views
  • Uploaded on
  • Presentation posted in: General

第二章 随机变量及其分布. 关键词: 随机变量 概率分布函数 离散型随机变量 连续型随机变量 随机变量的函数. 常见的两类试验结果:. §1 随机变量. 示数的 —— 降雨量; 候车人数; 发生交通事故的次数 …. 示性的 —— 明天天气(晴,云 … ); 化验结果(阳性,阴性) …. s. x. e. 中心问题:将试验结果数量化. X=f(e) --为 S 上的单值函数, X 为实数.

Download Presentation

第二章 随机变量及其分布

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


5374114


5374114

1


5374114

s

x

e

X=f(e)SX


5374114


5374114

2

()


5374114


5374114

X

c.


5374114


5374114

3p0<p<1XX


5374114

Ai={i}P(Ai)=pi=1,2,3 A1,A2,A3


5374114

3

2

1

X

0

p

p(1-p)

p

(1-p)2p

(1-p)3


5374114

X

0

1

q

p

p

01

X

01

(p+q=1,p>0,q>0)

Xp0-1.


5374114


5374114

S01


5374114

01


5374114

,A,P(A)=p,(0<p<1).A, p0-1:

Bernoulli


5374114

  • nE ,p(A)=p,0<p<1,Enn


5374114

  • n:

  • nA={1}


5374114

52nA={}


5374114

AnX

Xp


5374114

Ai={ iA }n=3


5374114

,10255p.


5374114

A={} XY2.

Xb(10,p)Yb(5,p){X=i}{Y=j}


5374114


5374114

X

(Poisson)

X


5374114

(1)13

(2)543


5374114

200110003


5374114

X

X


5374114

ababN,nXX


5374114

X

Xp


5374114

  • p0<p<1XXp


5374114

X

X(r,p).


5374114

  • p0<p<1,rXX(r,p)


5374114

  • pSXX(S,p)


5374114

3


5374114

X

1

0

p

p

q

p>0,q>0,q+p=1.


5374114

1

q

0

1


5374114

  • A,BA,B3A,B1/4A,BAX X


5374114

4

:X

X


5374114


5374114

  • X

    (1)c

    (2)X

    (3) k


5374114


5374114

X

15Y(1)Y;(2)Y


5374114

X

X(a,b)XU(a,b)


5374114

1(-1,2)XX

210100


5374114

1 X(-1,2)

210Y0


5374114

>0X

X


5374114

X


5374114

X (Gauss)

X


5374114


5374114


5374114

()

()


5374114

  • X

  • X


5374114


5374114


5374114

aX

1a0.005

2a0.0085


5374114

()

(1)=100=297.8cm

(2)=10090%(97,103)


5374114

X 2540033350


5374114

X

Y

5

X

Y=g(X)Y


5374114

1

0

-1

X

pi

0.2

0.5

0.3

X

Y=X2Y


5374114

Y0,1

(Y=0)(X=0)

(Y=1)(X=1)(X=-1)


5374114

X

Y=


5374114

X,Y


5374114

Y(0,16)


5374114

XY=g(X)Y


5374114

0

1

-1

X

Y=2X,Z=X2,Y,Z


5374114

2

Y

-2

0

1

0

Z

p

p

Y-2,0,2

Z0,1

(Y=-2)(X=-1)

(Z=1)(X=1)(X=-1)


5374114


5374114

X~U(-1, 2)


5374114

X~N(0, 1)


5374114

y

y=g(x)

y

h(y),y

0

x


5374114


5374114


5374114

!


  • Login