Lisrel matrices lisrel programming
This presentation is the property of its rightful owner.
Sponsored Links
1 / 47

LISREL matrices, LISREL programming PowerPoint PPT Presentation


  • 114 Views
  • Uploaded on
  • Presentation posted in: General

LISREL matrices, LISREL programming. ICPSR General Structural Equations Week 2 Class #4. Class Exercise. (from previous class notes:). Class exercise. BETA 2 x 2 0BE(1,2) BE(2,1) 0 PHI 2 X 2 PHI(1,1) 0PHI(2,2) GAMMA 2 X 2 GA(1,1) 0 0 GA(2,2). PSI 2 x 2 PS(1,1)

Download Presentation

LISREL matrices, LISREL programming

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Lisrel matrices lisrel programming

LISREL matrices, LISREL programming

ICPSR General Structural Equations

Week 2 Class #4


Lisrel matrices lisrel programming

Class Exercise

(from previous class notes:)


Class exercise

Class exercise

BETA 2 x 2

0BE(1,2)

BE(2,1) 0

PHI 2 X 2

PHI(1,1)

0PHI(2,2)

GAMMA 2 X 2

GA(1,1) 0

0 GA(2,2)

PSI 2 x 2

PS(1,1)

PS(2,1)PS(2,2)


Lisrel matrices lisrel programming

LAMBDA-X

10

LX(2,1)0

LX(3,1)LX(3,2)

01

0LX(5,2)

LAMBDA-Y

10

LY(2,1)0

LY(3,1)0

01

0LY(5,2)

0LY(6,2)


Lisrel matrices lisrel programming

MO NY=6 NX=5 NK=2 NE=2 LX=FU,FI LY=FU,FI C

PH=SY BE=FU,FI GA=FU,FI TD=SY TE=SY PS=SY,FR

VA 1.0 LX 1 1 LX 4 2 LY 1 1 LY 4 2

FR LX 2 1 LX 3 1 LX 3 2 LX 5 2 LY 2 1 LY 3 1 LY 5 2 LY 6 2

FR GA 1 1 GA 2 2

FR BE 2 1 BE 1 2


Exercise 2 a panel model with correlated errors

Exercise 2:A (PANEL) MODEL WITH CORRELATED ERRORS


Exercise 2 a panel model with correlated errors1

Exercise 2:A (PANEL) MODEL WITH CORRELATED ERRORS

Beta 2 x 2

00

BE(2,1)0

PSI 2 x 2

PS(1,1)

0PS(2,2)

Not shown: zeta1

Theta-eps

TE(1,1)

0TE(2,2)

00TE(3,3)

TE(4,1)00TE(4,4)

0TE(5,2)00TE(5,5)

00000TE(6,6)


Exercise 2 a panel model with correlated errors2

Exercise 2:A (PANEL) MODEL WITH CORRELATED ERRORS

MO NY=6 NE=2 LY=FU,FI PS=SY TE=SY BE=FU,FI

VA 1.0 LY 1 1 LY 4 2

FR LY 2 1 LY 3 1 LY 5 2 LY 6 2

FR BE 2 1

FR TE 4 1 TE 5 2

Notes: PS=SY specification  free diagonals (PS(1,1) and PS(2,2), fixed off-diagonals [ps(2,1)=0 in this model].


Exercise 3

Exercise 3


Exercise 31

Exercise 3

BETA 2 X 2

00

BE(2,1)0

LAMBDA-Y

10

LY(2,1)0

LY(3,1) LY(3,2)

01

0LY(5,2)

Gamma 2 x 1

GA(1,1)

0

LAMBDA-X 1 X 1

1


Exercise 32

Exercise 3

MO NX=1 NY=5 NK=1 NE=2 LX=ID LY=FU,FI C

PS=SY PH=SY TD=ZE TE=SY BE=FU,FI GA=FU,FI

VA 1.0 LY 1 1 LY 4 2

FR LY 2 1 LY 3 1 LY 3 2 LY 5 2

FR GA 1 1 BE 2 1


Exercise 4

Exercise 4

This is a non-standard model.


Exercise 41

Exercise 4

This parameter cannot be estimated in LISREL; must re-express the model (to an equivalent that CAN be estimated)


Re expressed model

RE-EXPRESSED MODEL

LAMBDA – Y

10

LY(2,1)0

LY(3,1)0

LY(4,1)0

01

BETA

0BE(1,2)

00


Re expressed model1

RE-EXPRESSED MODEL

Now X1,X2

MO NY=5 NX=2 NK=1 NE=2 LY=FU,FI LX=FU,FR C

GA=FU,FR PS=SY PH=SY TD=SY TE=SY

VA 1.0 LX 1 1 LY 1 1 LY 5 2

FR LX 2 1 LY 2 1 LY 3 1 LY 4 1

FI TE 5 5  SINGLE INDICATOR, CANNOT ESTIMATE ERROR


Lisrel matrices lisrel programming

Re-expressed as:

e3 variance=0

Same variance as e3 in previous model

Same as lambda parameter in previous model


The same sort of principle can be used for other purposes too

The same sort of principle can be used for other purposes too:

Imposing an inequality constraint.

Example: We wish to impose a constraint such that VAR(e3) > 0 (don’t allow negative error variance).


Lisrel matrices lisrel programming

Lambda 2, lambda 3: same parm’s

Variance of ksi-2 fixed to 1.0

X3 = lambda3 KSI1 + lambda4 KSI2

VAR(X3) = lambda32*VAR(Ksi-1) + lambda42 *VAR(KSI-2) Since…..VAR(ksi-2) = 1.0

[expression lambda42 replaces VAR(e3)

Regardless of estimate of lambda4, variance >0.


The lisrel program

The LISREL PROGRAM:

MO modelparameters statement

FR free a parameter

FI fix a parameter

VA set a parameter to a value (if the parameter is free, this is the “start value” to override program default estimate; otherwise, it is the value to which a parameter is constrained


The lisrel program1

The LISREL PROGRAM:

If reading in a “system” .dsf file created by prelis:

Title

SY= input file if LISREL .dsf

DA - dataparameters

SE selection of variables

MO – modelparameters

… various FI and FR statements

OU – outputparameters (see handout)


The lisrel program2

The LISREL PROGRAM:

! Achievement Values Program #1

SY='z:\baer\Week2Examples\LISREL\Achieve1.dsf'

SE

REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT /

MO NY=6 NE=1 LY=FU,FR PS=SY TE=SY

FI LY 1 1

VA 1.0 LY 1 1

OU ME=ML SC MI

  • SE statement lists variables to be used (always specify Y variables first)

  • can change order on SE statement. Here, REDUCE is Y1, NEVHAPP is Y2, etc. LY 1 1 refers to REDUCE.

  • OU : ME=ML (maximum likelihood) SC (standardized solution) MI (provide modification indices)


Lisrel output

LISREL Output:

Parameter Specifications

LAMBDA-Y

ETA 1

--------

REDUCE 0

NEVHAPP 1

NEW_GOAL 2

IMPROVE 3

ACHIEVE 4

CONTENT 5

PSI

ETA 1

--------

6

THETA-EPS

REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT

-------- -------- -------- -------- -------- --------

7 8 9 10 11 12

Reference indicator is “fixed” All fixed parameters represented by 0.

Theta-eps is diagonal


Lisrel output1

LISREL Output

LISREL Estimates (Maximum Likelihood)

LAMBDA-Y

ETA 1

--------

REDUCE 1.00

NEVHAPP 2.14

(0.37)

5.72

NEW_GOAL -2.76

(0.46)

-6.00

IMPROVE -4.23

(0.70)

-6.01

ACHIEVE -2.64

(0.45)

-5.87

CONTENT 2.66

(0.46)

5.78


Lisrel output2

LISREL Output

Covariance Matrix of ETA

ETA 1

--------

0.01

PSI

ETA 1

--------

0.01

(0.00)

3.08

THETA-EPS

REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT

-------- -------- -------- -------- -------- --------

0.53 0.38 0.19 0.21 0.36 0.50

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

38.84 36.44 28.79 18.92 34.53 35.92

Squared Multiple Correlations for Y - Variables

REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT

-------- -------- -------- -------- -------- --------

0.02 0.11 0.29 0.46 0.17 0.13


Lisrel output3

LISREL Output

Modification Indices and Expected Change

No Non-Zero Modification Indices for LAMBDA-Y

No Non-Zero Modification Indices for PSI

Modification Indices for THETA-EPS

REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT

-------- -------- -------- -------- -------- --------

REDUCE - -

NEVHAPP 323.45 - -

NEW_GOAL 24.46 4.29 - -

IMPROVE 92.13 52.90 87.29 - -

ACHIEVE 19.12 48.71 0.97 33.31 - -

CONTENT 170.74 243.43 58.94 21.28 1.82 - -

Expected Change for THETA-EPS

REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT

-------- -------- -------- -------- -------- --------

REDUCE - -

NEVHAPP 0.15 - -

NEW_GOAL 0.03 0.01 - -

IMPROVE 0.08 0.06 0.10 - -

ACHIEVE 0.04 0.05 0.01 0.06 - -

CONTENT 0.13 0.14 0.06 0.05 0.01 - -

Completely Standardized Expected Change for THETA-EPS

REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT

-------- -------- -------- -------- -------- --------

REDUCE - -

NEVHAPP 0.32 - -

NEW_GOAL 0.09 0.04 - -

IMPROVE 0.18 0.15 0.29 - -

ACHIEVE 0.08 0.12 0.02 0.14 - -

CONTENT 0.23 0.27 0.14 0.10 0.02 - -

Maximum Modification Index is 323.45 for Element ( 2, 1) of THETA-EPS


Lisrel program input

Lisrel program input

If reading in a covariance matrix generated by PRELIS instead of a .dsf file:

DANO=# cases NI=# of input var’s MA=CM

{MA = type of matrix to be analyzed; default = CM, or a covariance matrix}

CM FI=‘c:\file1.cov’

input file specification(cov)

SE

2 3 6 9 8 7 /

Selection: corresponds to order in which variables located on input covariance matrix (3rd variable on the matrix is now Y2).


Another lisrel example

Another LISREL example:

! Achievement Values Program #8: Adding One Extra Measurement Model Path

SY='z:\baer\Week2Examples\LISREL\Achieve1.dsf'

SE

REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT

GENDER AGE EDUC INCOME/

MO NX=4 NK=4 NY=6 NE=2 LX=ID PH=SY,FR TD=ZE LY=FU,FI C

PS=SY,FR TE=SY GA=FU,FR

FI LY 2 1

FI LY 3 2

VA 1.0 LY 2 1 LY 3 2

FR LY 1 1 LY 6 1 LY 4 2 LY 5 2

FR LY 1 2

PD

OU ME=ML SE TV SC MI


From output listing

(from output listing)

Parameter Specifications

LAMBDA-Y

ETA 1 ETA 2

-------- --------

REDUCE 1 2

NEVHAPP 0 0

NEW_GOAL 0 0

IMPROVE 0 3

ACHIEVE 0 4

CONTENT 5 0

GAMMA

GENDER AGE EDUC INCOME

-------- -------- -------- --------

ETA 1 6 7 8 9

ETA 2 10 11 12 13

PHI

GENDER AGE EDUC INCOME

-------- -------- -------- --------

GENDER 14

AGE 15 16

EDUC 17 18 19

INCOME 20 21 22 23

PSI

ETA 1 ETA 2

-------- --------

ETA 1 24

ETA 2 25 26

THETA-EPS

REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT

-------- -------- -------- -------- -------- --------

27 28 29 30 31 32


Output

(output)

LISREL Estimates (Maximum Likelihood)

LAMBDA-Y

ETA 1 ETA 2

-------- --------

REDUCE 1.13 0.65

(0.07) (0.08)

17.32 8.53

NEVHAPP 1.00 - -

NEW_GOAL - - 1.00

IMPROVE - - 1.85

(0.12)

16.00

ACHIEVE - - 0.99

(0.06)

15.95

CONTENT 1.16 - -

(0.06)

19.84

GAMMA

GENDER AGE EDUC INCOME

-------- -------- -------- --------

ETA 1 0.02 -0.01 0.03 0.01

(0.02) (0.00) (0.00) (0.00)

1.14 -10.40 10.04 5.67

ETA 2 0.07 0.00 0.01 0.00

(0.01) (0.00) (0.00) (0.00)

  • 4.90 4.81 4.19 -0.79


Lisrel matrices lisrel programming

Covariance Matrix of ETA and KSI

ETA 1 ETA 2 GENDER AGE EDUC INCOME

-------- -------- -------- -------- -------- --------

ETA 1 0.15

ETA 2 -0.04 0.07

GENDER -0.01 0.02 0.25

AGE -2.25 0.37 -0.08 269.69

EDUC 0.53 0.06 -0.07 -18.55 13.75

INCOME 0.47 -0.08 -0.98 -15.71 5.55 20.57

Squared Multiple Correlations for Structural Equations

ETA 1 ETA 2

-------- --------

0.22 0.03


Lisrel output4

(LISREL output)

Modification Indices and Expected Change

Modification Indices for LAMBDA-Y

ETA 1 ETA 2

-------- --------

REDUCE - - - -

NEVHAPP - - 3.55

NEW_GOAL 4.90 - -

IMPROVE 0.84 - -

ACHIEVE 2.18 - -

CONTENT - - 3.55


Lisrel matrices lisrel programming

Completely Standardized Solution

LAMBDA-Y

ETA 1 ETA 2

-------- --------

REDUCE 0.59 0.24

NEVHAPP 0.59 - -

NEW_GOAL - - 0.52

IMPROVE - - 0.79

ACHIEVE - - 0.41

CONTENT 0.59 - -

GAMMA

GENDER AGE EDUC INCOME

-------- -------- -------- --------

ETA 1 0.03 -0.25 0.25 0.15

ETA 2 0.12 0.11 0.10 -0.02

(could have used LA (labels) statement to provide labels for these latent variables)


Reproduced covariances in matrix form

Reproduced covariances in matrix form

First examples are for SEM models that are “manifest variable only” – no latent variables.


Manifest variables only

Manifest variables only


Manifest variables only1

Manifest variables only


Manifest variables only2

Manifest variables only

Previous example had no paths connecting endogenous y-variables (no “Beta” matrix). A bit more complicated with these included:


Manifest variables only3

Manifest variables only

With Beta matrix:


Manifest variables only4

Manifest variables only


Manifest variables only5

Manifest variables only


Manifest variables only6

Manifest variables only


Manifest variables only7

Manifest variables only


Latent variables included

Latent variables included

Measurement model only


Lisrel matrices lisrel programming

Latent variables included


Lisrel matrices lisrel programming

δ


Last slide

(last slide)


  • Login