66 44 instrumentos electr nicos
This presentation is the property of its rightful owner.
Sponsored Links
1 / 43

66.44 Instrumentos Electrónicos PowerPoint PPT Presentation


  • 66 Views
  • Uploaded on
  • Presentation posted in: General

66.44 Instrumentos Electrónicos. Introducción a líneas de transmisión. Definición. Es un sistema de conductores capaces de transmitir potencia eléctrica desde una fuente a una carga.

Download Presentation

66.44 Instrumentos Electrónicos

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


66 44 instrumentos electr nicos

66.44 Instrumentos Electrónicos

Introducción a líneas de transmisión


Definici n

Definición

Es un sistema de conductores capaces de transmitir potencia eléctrica desde una fuente a una carga.

De acuerdo a esta definición tanto la línea de alta tensión proveniente desde El Chocón, como una línea telefónica, un cable coaxial o las pistas de un circuito impreso son líneas de transmisión.

No es su único uso ya que también se las puede utilizar como circuitos sintonizados, transformadores (para adaptar impedancias), etc.

Introducción a líneas de transmisión


Por qu ver l neas en un curso de instrumentos electr nicos

¿Por qué ver líneas en un curso de instrumentos electrónicos?

Pues bien, ¿para que se utiliza un instrumento electrónico?

Los instrumentos electrónicos se utilizan básicamente para realizar mediciones sobre un circuitosin afectar el funcionamiento del mismo.

Esto depende fundamentalmente de las características de los instrumentos seleccionados para realizar la medición (una mala selección puede sacar de funcionamiento al circuito bajo ensayo, provocar la destrucción del mismo y del instrumento), pero los instrumentos se vinculan al circuito y entre sí mediante conductores que transmiten energía eléctrica (o sea las líneas de transmisión). Al finalizar este tema entenderemos porque una mala selección de estos “conductores” puede lograr los mismos efectos que una mala selección de los instrumentos a utilizar.

Introducción a líneas de transmisión


Tipos de l neas de transmisi n

Tipos de líneas de transmisión

Las líneas de transmisión pueden dividirse en distintos tipos según su geometría o según su equilibrio eléctrico.

  • Según su equilibrio eléctrico:

    • Balanceadas: son aquellas donde entre cada conductor y tierra aparece la misma diferencia de potencial (en módulo)

    • Desbalanceadas: no se cumple lo mencionado en el párrafo anterior ya que generalmente uno de los conductores está vinculado a tierra.

  • Según su geometría:

    • unifilares, bifilares, coaxiales, cables radiantes, etc.

  • En la práctica esto provoca que por su geometría cierto tipo de líneas se utilicen mayormente como líneas desbalanceadas (por ejemplo los cables coaxiales) u otras como balanceadas (bifilares).

Introducción a líneas de transmisión


Descripci n del funcionamiento

Descripción del funcionamiento

¿Cómo analizar el funcionamiento de una línea de transmisión?

  • Utilizando la teoría electromagnética

    Por ejemplo en una línea bifilar se pueden plantear las ecuaciones que describan la distribución del campo electromagnético en la misma

Introducción a líneas de transmisión


Descripci n del funcionamiento1

Descripción del funcionamiento

De la figura anterior se puede deducir la existencia de un vector de Poynting que va a lo largo de la línea de transmisión dado por la siguiente ecuación:

Este vector es el que sostiene las ondas de tensión y corriente que se desplazan en la línea.

Este método si bien no posee las limitaciones del método que se verá a continuación, implica el desarrollo de largos formuleos que están fuera del alcance de este curso debido al escaso tiempo para desarrollarlo.

Introducción a líneas de transmisión


Descripci n del funcionamiento2

Descripción del funcionamiento

  • Utilizando la teoría de circuitos

  • Esta visión más simplificada de las líneas de transmisión sólo es válida mientras que la distancia que separa los distintos conductores (d) que conforman la misma sea mucho menor que la longitud de onda () de las señales que viajan por la misma.

  • Al aplicar la teoría de circuitos a las líneas se descubrió que la solución que más se aproximaba a la realidad física era suponer a la línea compuesta por circuitos elementales tipo ‘T’ de constantes distribuidas por unidad de longitud.

Introducción a líneas de transmisión


Descripci n del funcionamiento3

Descripción del funcionamiento

  • De acuerdo a esto se definen los siguientes parámetros y el circuito que los asocia:

    • Inductancia serie por metro (l)

    • Resistencia serie por metro (r)

    • Capacidad paralelo por metro (c)

    • Conductancia paralelo por metro (g)

Introducción a líneas de transmisión


Descripci n del funcionamiento4

Descripción del funcionamiento

Planteando la primer Ley de Kirchoff se obtiene

Despreciando diferenciales de segundo orden y dividiendo por dx queda la primer ecuación telegráfica

Ecuación 1

Introducción a líneas de transmisión


Descripci n del funcionamiento5

Descripción del funcionamiento

Planteando la segunda Ley de Kirchoff se obtiene

Despreciando diferenciales de segundo orden y dividiendo por dx queda la segunda ecuación telegráfica

Ecuación 2

Introducción a líneas de transmisión


Descripci n del funcionamiento6

Descripción del funcionamiento

Suponiendo que aplicamos una tensión senoidal a un extremo de la línea

y remplazando esta expresión en la ecuación 1 se obtiene

si definimos

la expresión anterior resulta en

Ecuación 3

Introducción a líneas de transmisión


Descripci n del funcionamiento7

Descripción del funcionamiento

Si se aplica una tensión senoidal es lógico suponer que la corriente que circula por la línea también será senoidal

por lo tanto la ecuación 3 quedaría

Ecuación 4

Análogamente si se repite el procedimiento para la corriente en la ecuación 2 y definiendo

se obtiene

Introducción a líneas de transmisión


Descripci n del funcionamiento8

Descripción del funcionamiento

Ecuación 5

Derivando nuevamente esta ecuación y despejando se llega a

reemplazando en la ecuación 4 y operando queda

Introducción a líneas de transmisión


Descripci n del funcionamiento9

Descripción del funcionamiento

si se repite el proceso pero derivando la ecuación 4 y reemplazando en la ecuación 5 se llegará a

Esta es una ecuación diferencial de segundo grado cuya solución es

Ecuación 6

aplicando esta solución a I(x) en la ecuación 4 se obtiene

Ecuación 7

Introducción a líneas de transmisión


Descripci n del funcionamiento10

Descripción del funcionamiento

Si se realizan las siguientes definiciones

: constante de propagación de la línea .......

: atenuación de la línea .......

: constante de fase de la línea .......

Z0: impedancia característica ......

y se aplican las mismas a las ecuaciones 6 y 7 se obtiene

Ecuación 8

Introducción a líneas de transmisión


Descripci n del funcionamiento11

Descripción del funcionamiento

Ecuación 9

Estas son las ecuaciones que rigen el comportamiento de una línea de transmisión.

A continuación veremos que significan estas ecuaciones para lo cual se supondrá un circuito simple formado por un generador, una impedancia de carga (ZL) y una línea de transmisión de impedancia característica Z0 vinculando ambos.

Ecuación 10

Introducción a líneas de transmisión


Descripci n del funcionamiento12

Descripción del funcionamiento

El primer termino del segundo miembro muestra una onda que viaja del generador hacia la carga (onda incidente) y el segundo término una que viaja de la carga hacia el generador (onda reflejada).

Para poder obtener las condiciones de contorno que nos permitan obtener los valores de las constantes V1 y V2 plantearemos distintos casos de un circuito simple compuesto por un generador ideal, una impedancia de carga (ZL) y una línea de transmisión de impedancia característica Z0 que los vincula.

Introducción a líneas de transmisión


Descripci n del funcionamiento13

Descripción del funcionamiento

1er caso ZL=Z0

Si la longitud de la línea tiende a infinito, se puede apreciar en las ecuaciones 9 y 10 que los segundos términos del segundo miembro también tienden a infinito. Esto es incompatible con la realidad física, por lo tanto V2 debe ser nulo quedando

Ecuación 11

Supongamos el caso ideal en que =0 (línea sin pérdidas), y elegimos dos pares de valores (x1, t1) y (x2,t1) tales que:

Introducción a líneas de transmisión


Descripci n del funcionamiento14

Descripción del funcionamiento

Si definimos x2-x1 como la longitud de onda () se obtiene

Si elegimos ahora dos pares de valores (x1, t1) y (x2,t2), siempre sobre una línea ideal sin pérdidas tales que:

Introducción a líneas de transmisión


Descripci n del funcionamiento15

Descripción del funcionamiento

O sea que la velocidad de propagación es igual al producto de la frecuencia por la longitud de onda. La velocidad de propagación entre otros parámetros depende del dieléctrico de la línea, por lo tanto dos señales de igual frecuencia tendrán distinta  dependiendo del medio de propagación

2do caso ZLZ0

Partiendo de la ecuación 10 para tensión y de la 9 para la corriente se pueden plantear las siguientes ecuaciones de onda

Introducción a líneas de transmisión


Descripci n del funcionamiento16

Descripción del funcionamiento

Sobre la carga se debe seguir cumpliendo la ley de Ohm así que

Definiendo el coeficiente de reflexión  como la relación entre la tensión incidente y reflejada queda:

Introducción a líneas de transmisión


Descripci n del funcionamiento17

Descripción del funcionamiento

Al módulo del coeficiente de reflexión se lo designa con la letra griega “” y en función de este se designa perdida de inserción a la siguiente expresión:

Perdida de inserción = 20 log(  )

En la ecuación 10 se podían apreciar dos ondas viajeras a lo largo de la línea (una incidente y una reflejada), si representamos las mismas mediante fasores tendríamos el siguiente esquema

Introducción a líneas de transmisión


Descripci n del funcionamiento18

Descripción del funcionamiento

Donde se puede apreciar que a lo largo de la línea se verá una señal periódica con sus correspondientes mínimos y máximos. A la relación entre el valor máximo y mínimo se la denomina relación de onda estacionaria ROE (o VSWR en inglés).

Introducción a líneas de transmisión


Implicancias de tener una l nea de transmisi n en un circuito

Implicancias de tener una línea de transmisión en un circuito

Hasta aquí se han visto las ecuaciones de las ondas de tensión y corriente a lo largo de una línea y se han definido los parámetros de la misma (Z0, , , v) y otros parámetros que además dependen de la señal que viaja por ella y de la carga existente al final de ella (,  y ROE o WSWR).

¿Pero que significa introducir una línea en nuestros circuitos?

Supongamos tener una línea de longitud “L”, al final de la línea en la carga E=EL e I=IL, partiendo de las ecuaciones 8 y 9

Ecuación 12

Ecuación 13

Introducción a líneas de transmisión


Implicancias de tener una l nea de transmisi n en un circuito1

Implicancias de tener una línea de transmisión en un circuito

Sumando miembro a miembro las ecuaciones 12 y 13

Reemplazando V1 y V2 en las ecuaciones 8 y 9

Introducción a líneas de transmisión


Implicancias de tener una l nea de transmisi n en un circuito2

Implicancias de tener una línea de transmisión en un circuito

El término L-x representa el punto de la línea que está a una distancia d de ZL , por consiguiente aplicando esto y ley de Ohm sobre ZL queda

desarrollando ed = cosh(d)+senh(d) se obtiene

Introducción a líneas de transmisión


Implicancias de tener una l nea de transmisi n en un circuito3

Implicancias de tener una línea de transmisión en un circuito

Análogamente

Dividiendo miembro a miembro estas dos ecuaciones se obtiene la impedancia que presenta la línea a una distancia determinada de ZL

Ecuación 14

Introducción a líneas de transmisión


Implicancias de tener una l nea de transmisi n en un circuito4

Implicancias de tener una línea de transmisión en un circuito

Dividiendo numerador y denominador por ILCosh(  d ) se obtiene

Multiplicando numerador y denominador por Z0

Ecuación 15

De la ecuación anterior se puede concluir que la impedancia que se ve a la entrada de una línea de longitud “L” terminada en una impedancia ZL es

Introducción a líneas de transmisión


Implicancias de tener una l nea de transmisi n en un circuito5

Implicancias de tener una línea de transmisión en un circuito

Donde se puede apreciar que la impedancia de entrada no sólo depende de la impedancia al final de la línea sino también de los parámetros de la línea (Z0, , ) y de la relación entre el largo de la misma y la frecuencia de la señal que viaja por ella (ya que =2 / )

¿Que sucede en el caso ideal de una línea sin pérdidas ( = 0)?

En este caso  = j, por lo tanto recordando que Tanh(jx) = j tan(x) y reemplazando en la expresión anterior se obtiene

Introducción a líneas de transmisión


Implicancias de tener una l nea de transmisi n en un circuito6

Implicancias de tener una línea de transmisión en un circuito

Ecuación 16

Se analizará a continuación que ocurre para diversas combinaciones entre L (longitud de la línea) y  (longitud de onda de la señal) así como también para distintas impedancias de carga

Introducción a líneas de transmisión


Implicancias de tener una l nea de transmisi n en un circuito7

Implicancias de tener una línea de transmisión en un circuito

1er Caso) Líneas de longitud /2 o múltiplos enteros de /2

2do Caso) Líneas de longitud /4 o múltiplos impares de /4

Introducción a líneas de transmisión


Implicancias de tener una l nea de transmisi n en un circuito8

Implicancias de tener una línea de transmisión en un circuito

Si Ze y ZL son resistivas puras se cumple que

Este es el motivo por el cual a la línea de cuarto de onda se la suele llamar “transformador de cuarto de onda” ya que permite adaptar 2 resistencias que cumplan la condición anterior.

3er Caso) ZL= 

En este caso resulta IL=0 por lo tanto de la ecuación 14 se obtiene

Introducción a líneas de transmisión


Implicancias de tener una l nea de transmisi n en un circuito9

Implicancias de tener una línea de transmisión en un circuito

Si Z0 es resistiva, como ocurre en la práctica, dependiendo de la relación entre la longitud de onda y el largo de la línea, la impedancia de entrada será capacitiva o inductiva pura. También se presentará como un circuito resonante serie (múltiplos enteros impares de /4) o resonantes paralelos (múltiplos enteros de /2)

4to Caso) ZL= 0

Es un caso similar al anterior pero en este caso resulta

obteniéndose los mismos resultados pero invertidas las condiciones de resonancia serie y paralelo.

Introducción a líneas de transmisión


Cables coaxiales

Cables Coaxiales

Hasta aquí las ecuaciones generales de una línea de transmisión. Los parámetros descriptos (, , ) dependen de los parámetros constructivos de la línea. Veamos de donde surgen en un cable coaxial.

El patrón del campo electromagnético en un coaxial se basa en el modo transversal electromagnético (TEM). Este es un modo de propagación donde en todas partes (dentro del cable) el campo eléctrico y magnético son perpendiculares entre sí y perpendicular al sentido longitudinal del cable.

Introducción a líneas de transmisión


Cables coaxiales1

Cables Coaxiales

A medida que sube la frecuencia de la señal en le cable aparecen otros modos de propagación no deseados por lo tanto es importante conocer la máxima frecuencia de trabajo la cual se puede calcular como:

  • Donde:

    • c = velocidad de la luz en el vacío

    • r =permitividad relativa del dieléctrico

    • d = diámetro del conductor interior

    • D = diámetro del conductor exterior

La impedancia característica de la línea se obtiene como (aproximación válida para frecuencias superiores a 5 Mhz)

Introducción a líneas de transmisión


Cables coaxiales2

Cables Coaxiales

Y la atenuación (dB/100m) para frecuencias superiores a 10 Mhz se puede aproximar a

  • Donde los diámetros se expresan en mm, la frecuencia en Mhz y:

  • 1 = conductividad del conductor interior (MS/m)

    • 2 = conductividad del conductor exterior (MS/m)

    • tan  = Factor de disipación del dieléctrico

  • La atenuación además varía con la temperatura siguiendo aproximadamente la siguiente fórmula

Introducción a líneas de transmisión


Caracter sticas de cables coaxiales comerciales

Características de Cables Coaxiales Comerciales

Introducción a líneas de transmisión


Caracter sticas de cables coaxiales comerciales1

Características de Cables Coaxiales Comerciales

Introducción a líneas de transmisión


Caracter sticas de cables coaxiales comerciales2

Características de Cables Coaxiales Comerciales

Introducción a líneas de transmisión


Caracter sticas de cables coaxiales comerciales3

Características de Cables Coaxiales Comerciales

Introducción a líneas de transmisión


Caracter sticas de cables coaxiales comerciales4

Características de Cables Coaxiales Comerciales

Introducción a líneas de transmisión


Caracter sticas de cables coaxiales comerciales5

Características de Cables Coaxiales Comerciales

Introducción a líneas de transmisión


Conectores para cables coaxiales

Conectores para Cables Coaxiales

Introducción a líneas de transmisión


  • Login