1 / 32

Functions

Functions. Building blocks of a C++ program Each function has a name, which is used to call the function; functions call each other You will write your own functions, e.g. main() , and also use pre-written functions from standard library. /* This program contains two functions: main()

kiri
Download Presentation

Functions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Functions • Building blocks of a C++ program • Each function has a name, which is used to call the function; functions call each other • You will write your own functions, e.g. main(), and also use pre-written functions from standard library

  2. /* This program contains two functions: main() and myfunc(). */ #include <iostream.h> void myfunc(); // myfunc's Protoype int main() { cout << "In main()"; myfunc(); // call myfunc() cout << "Back in main()"; return 0; } void myfunc() // myfunc’s Definition { cout << " Inside myfunc() "; }

  3. Function Prototype void myfunc(); // myfunc's Protoype • Like variable declaration; tells the compiler about the return type of the function and the number and type of parameters it needs from the calling function: return_type functionName (parameter list); • So, place prototypes before main() • main() is predefined in C++ and does not need a prototype • Can’t the compiler look ahead and get definitions? • Prototype can be omitted if whole function placed before it is called; is that a good practice?

  4. Returning a Value // Returning a value. #include <iostream.h> int mul(int x, int y); // mul()'s prototype int main() { int answer; answer = mul(10, 11); // assign return value cout << "The answer is " << answer; return 0; } // This function returns a value. int mul(int x, int y) { return x * y; // return product of x and y }

  5. Library Functions • Pre-written functions in libraries that you can use • Just include the proper header file • Compiler gets prototype from the header file and searches appropriate libraries itself to get function definition • e.g. math library has mathematical functions in it #include <iostream.h> #include <math.h> //or <cmath> int main() { cout << sqrt(9.0); return 0; }

  6. Scope Rules • Scope rules tell that a variable is visible to which parts of your program; also define variable’s lifetime • 3 types of variables: local, global, formal parameters

  7. Scope Rules - Local Variables • A variable can be declared inside any block and is then local to that block • Block: {} int main() { {int x = 4;} cout << x; return 0; } • error C2065: 'x' : undeclared identifier • Memory storage for a local variable created when entering its block and destroyed when its block exited

  8. Scope Rules-Local Variables • Most common block is a function #include <iostream.h> void func(); int main() { int x; // local to main() x = 10; func(); cout << x; // displays ? return 0; } void func() { int x; // local to func() x = -199; cout << x; // displays ? } • -199 10. Each variable x has a separate location in memory • Identically-named variables in inner block ‘hide’ or override those in the outer block; Avoid this practice

  9. Scope Rules-Local Variables #include <iostream.h> int main() { int i, j; i = 10; j = 100; if(j > 0) { // start of block int i; // this i is separate from outer i i = j / 2; // outer j is known here cout << “first inner i: " << i << '\n'; } if(i < 50) { i += 10; cout << “2nd inner i: “ << i << endl; } cout << "outer i: " << i << '\n'; return 0; } 50 20 20 • Declaring within a conditional block also saves memory; see next slide

  10. Scope Rules-Local Variables int main() { int choice; cout << "(1) add numbers or "; cout << "(2) concatenate strings?: "; cin >> choice; if(choice == 1) { int a, b; /* activate two integer vars */ cout << "Enter two numbers: "; cin >> a >> b; cout << "Sum is " << a+b << '\n'; } else { char s1[80], s2[80]; /* activate two strings */ cout << "Enter two strings: "; cin >> s1; cin >> s2; strcat(s1, s2); cout << "Concatenation is " << s1 << '\n'; } a = 10; // *** Error *** -- a not known here! return 0; }

  11. Scope Rules-Local Variables • Variables declared in for loops are local according to current spec for C++ for(int i = 0; i<10; i++) cout << i << " "; i = 100; // *** Error *** -- i not known here! • Does not work on Visual C++ 6.0 (i.e. no error) • Can declare a variable within any conditional expression if(int x = 20) { cout << "This is x: "; cout << x; } x = 2; //*** Error *** -- x not known here! • Not a good practice

  12. Scope Rules-Formal Parameters • Formal parameters: variables that receive values passed to a function • Scope local to the function #include <iostream.h> int mult(int, int); int main() { int a = 10, b = 20; cout << mult(a, b); //cout << x << y; // *** Error *** --unknown identifiers x, y return 0; } int mult(int x, int y)// can have different names here { return x*y; }

  13. Scope Rules-Global Variables • Usually declared outside any function; have life as long as the program runs • Can be used by all following functions • Usually placed at the beginning of program • Initialized only at the start of the program; uninitialized default to zero • An identically named local variable masks global one

  14. Scope Rules-Global Variables #include <iostream.h> void func(); int i = 2; // global int main() { cout << i << endl; func(); cout << i << endl; int i = 5; // local. What if i=5; cout << i << endl; func(); return 0; } void func() { cout << i << endl; int i = 3; // local cout << i << endl; } • 2 2 3 2 5 2 3 • 2 2 3 2 5 5 3ifi = 5at the indicated place

  15. Scope Rules-global variables #include <iostream.h> #include <cstdlib> void drill(); int count; //count and num_right are global int num_right; int main() { cout << "How many practice problems: "; cin >> count; num_right = 0; do { drill(); count--; } while(count); cout << "You got " << num_right << “ right.\n"; return 0; } void drill() { int count; /* This count is local. */ int a, b, ans; // Generate two numbers between 0 and 99. a = rand() % 100; b = rand() % 100; // The user gets three tries to get it right. for(count=0; count<3; count++) { cout << "What is " << a << " + " << b << "? "; cin >> ans; if(ans==a+b) { cout << "Right\n"; num_right++; return; } } cout << "You've used up all your tries.\n"; cout << "The answer is " << a+b << '\n'; }

  16. i 26 100 p j 100 100 Passing Pointers to Functions • No big deal. Just declare parameter as type _______ ? #include <iostream.h> void f(int *j);//or void f(int *); int main() { int i; int *p; p = &i; // p now points to i f(p); cout << i; // i is now 100 return 0; } void f(int *j) { *j = 100; // var pointed to by j is assigned 100 }

  17. Passing Pointers to Functions i • The pointer variable not necessary. Can generate and pass the address of i as such to f() #include <iostream.h> void f(int *j); int main() { int i; f(&i); cout << i; return 0; } void f(int *j) { *j = 100; // var pointed to by j is assigned 100 } 26 100 j 100

  18. t 5 Passing Pointers to Functions (copy) 5 #include <iostream.h> int sqr_it(int x); int main() { int t=10; cout << sqr_it(t) << ' ' << t; //output? } int sqr_it(int x) { x = x*x; return x;} • IMPORTANT: What’s the difference between the above function, and the ones on previous two slides? • Here, a copy of the value of t is passed. t remains unaltered. x is a local variable, which could have been named t • Called “Call by Value” • Previous called “Call by Reference” where the original variable (not a copy) is accessed by the called function x 5

  19. Passing Arrays to Functions • What is an array name without index? • Address of first element passed to function. So actual array accessed, not a copy. Saves memory • 3 ways to pass this address • Declare parameter as an array of same type and size #include <iostream.h> void display(int num[10]); //or display(int [10]); int main() { int t[10],i; for(i=0; i<10; ++i) t[i]=i; display(t); // pass array t to a function cout <<endl; for(i=0; i<10; i++) cout << t[i] << ' '; //output? } // Print some numbers. void display(int num[10]) { int i; for(i=0; i<10; i++) cout << num[i] << ' '; //output? for(i=0; i<10; i++) (num[i] = num[i] + 1); }

  20. Passing Arrays to Functions • Can also declare as display(int num[]) i.e. unsized. Same thing • Internally, compiler converts int num[10] or int num[] to int * • So, why not declare parameter as a pointer to int void display(int *num) { int i; for(i=0; i<10; i++) cout << num[i] << ' '; //or *(num+i) } • How is a single element passed? As an ordinary variable #include <iostream.h> void display(int num); //each element is of type int int main() { int t[10],i; for(i=0; i<10; ++i) t[i]=i; for(i=0; i<10; i++) display(t[i]); //only one element passed } void display(int num) { cout << num << ' ';}

  21. Passing Arrays to Functions #include <iostream.h> void cube(int *n, int num); int main() { int i, nums[10]; for(i=0; i<10; i++) nums[i] = i+1; cout << "Original contents: "; for(i=0; i<10; i++) cout << nums[i] << ' '; cout << '\n'; cube(nums, 10); // compute cubes cout << "Altered contents: "; for(i=0; i<10; i++) cout << nums[i] << ' '; return 0; } void cube(int *n, int num) { while(num) { *n = *n * *n * *n; num--; n++; } } • Original contents: 1 2 3 4 5 6 7 8 9 10 • Altered contents: 1 8 27 64 125 216 343 512 729 1000

  22. Passing Strings to Functions • What is a string stored as? So what should we pass? #include <iostream.h> #include <cstring> #include <cctype> void stringupper(char *str); int main() { char str[80]; strcpy(str, "this is a test"); stringupper(str); cout << str; // display uppercase string return 0; } void stringupper(char *str) { while(*str) { *str = toupper(*str); // uppercase one char str++; // move on to next char } } • Can also declare as an array of char stringupper(char[])

  23. The return Statement • return statement can be used without a value for void functions. Must return a value for non-void functions • Control passed back to calling function when return encountered or closing curly brace of function #include <iostream.h> void power(int base, int exp); int main() { power(2, 10); return 0; } void power(int base, int exp) { int i; if(exp<0) return; i = 1; for( ; exp; exp--) i = base * i; cout << "The answer is: " << i << endl; }

  24. The return Statement • Can have multiple return statements. Function returns as soon as the first one encountered void f() { // ... switch(c) { case 'a': return; case 'b': // ... case 'c': return; } if(count<100) return; // ... }

  25. The return Statement • non-void functions return values to the calling function. Therefore, can call a non-void function and use that call as an operand in an expression (as it has a value) in the calling function • x = power(y); • if(max(x, y)) > 100) cout << "greater"; • switch(abs(x)) {... • Don’t necessarily have to store the returned value in a variable #include <iostream.h> #include <cstdlib> int main() { int i; i = abs(-10); // stored cout << abs(-23); // just used abs(100); // returned value discarded return 0; }

  26. Multiple return Statements #include <iostream.h> int find_substr(char *sub, char *str); int main() { int index; index = find_substr("three", "one two three"); cout << "Index of three is " << index; // index is 8 return 0; } int find_substr(char *sub, char *str) { int t; char *p, *p2; for(t=0; str[t]; t++) { p = &str[t]; // reset pointers p2 = sub; while(*p2 && *p2==*p) { // check for substring p++; p2++; } /* If at end of p2 (i.e., substring), then a match has been found. */ if(!*p2) return t; // return index //of match } return -1; // no match found }

  27. Returning Pointers #include <iostream.h> char *get_substr(char *sub, char *str); int main() { char *substr; substr = get_substr("three", "one two three four"); cout << "substring found: " << substr; return 0; } char *get_substr(char *sub, char *str) { int t; char *p, *p2, *start; for(t=0; str[t]; t++) { p = &str[t]; // reset pointers start = p; p2 = sub; while(*p2 && *p2==*p) { //check for substring p++; p2++; } /* If at end of p2 (i.e., substring), then a match has been found. */ if(!*p2) return start; /* return pointer to beginning of substring */ } return 0; // no match found }

  28. Command Line Arguments • To pass info to main() from the command line • e.g. cl hellouser • Here, cl and hellouser are command line arguments • main() receives infor about these arguments in two parameters: int main( int argc, char *argv[]) • argc (argument count) parameter is an integer that holds the number of arguments on the command line. Always at least 1, as program name also counted • argv (argument variable) parameter is a null-terminated array of pointers to strings • argv[0] points to program name on command line, argv[1] points to the first argument, and so on. argv[argc]==0

  29. Command Line Arguments #include <iostream.h> int main(int argc, char *argv[]) { if(argc!=2) { cout << "You forgot to type your name.\n"; return 1; } cout << "Hello " << argv[1] << '\n'; return 0; } • If we name this program as greeting, then after making an exe file we can type greeting Shamail at the command prompt and the program will execute and output: Hello Shamail • Spaces and tabs usually separate strings; for a longer string, use quotes e.g. greeting “Shafay Shamail” outputs Hello Shafay Shamail

  30. Command Line Arguments • Can access individual characters in the command line strings by using a double subscript. See the program echo below #include <iostream.h> int main(int argc, char *argv[]) { int t, i; for(t=0; t<argc; ++t) {// t denotes the tth string i = 0; while(argv[t][i]) {// t[i] accesses the ith character of t cout << argv[t][i]; ++i; cout << ' '; } cout << ' '; } return 0; } • e.g. echo hi there results in e c h o h i t h e r e

  31. Passing Numeric Command Line Arguments • Want to pass numbers to main( ), but it takes strings • Use atof(), atoi(), atol() #include <iostream.h> #include <cstdlib> int main(int argc, char *argv[]) { double a, b; a = atof(argv[1]); b = atof(argv[2]); cout << a + b; return 0; } • atoi(“2”) gives 2; atof(“-11.11”) gives -11.11

  32. #include <iostream.h> int main(int argc, char *argv[]) { while(--argc > 0) cout << *++argv << endl; return 0; } Command Line Arguments #include <iostream.h> #include <cstdlib> int main(int argc, char *argv[]) { double a, b; a = atof(argv[1]); b = atof(argv[2]); cout << a + b; return 0; } #include <iostream.h> int main(int argc, char *argv[]) { for(int j=0; j<argc; j++) cout << argv[j] << endl; return 0; } #include <iostream.h> #include <cstdlib> int main(int argc, char *argv[]) { char **argvector = argv; double a, b; a = atof(*++argvector); b = atof(*++argvector); cout << a + b; return 0; }

More Related