1 / 46

October 30, 2007

Diffussion, thermodiffusion. Biological role of diffusion Osmosis, chemiosmosis. The microscopic transport of material. October 30, 2007. Lustyik. Examples for the biological role of diffusion. 2. = 6D t. D. R. R = 1 cm:. 8300 s (2 h 18 m). R = 3 m m (E. coli):. 7.5 x 10 -5 s.

Download Presentation

October 30, 2007

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Diffussion, thermodiffusion. Biological role of diffusion Osmosis, chemiosmosis The microscopic transport of material October 30, 2007 Lustyik

  2. Examples for the biological role of diffusion

  3. 2 = 6Dt D R R = 1 cm: 8300 s (2 h 18 m) R = 3 mm (E. coli): 7.5 x 10-5 s Motion of small molecules: Diffusion of water in water: D = 2 x 10-9 m2/s

  4. Dx = 10 nm DC = 500 mM Dn/Dt = -D *A/Dx * Dc Movement of K+ ions through the plasma membrane Diffusion of K+ ions in water: D = 10-16 m2/s 100 nm x 100 nm 3 x 104 K+ ion /sec

  5. Convective transport Diffusion Convective transport O2 CO2 Diffusion Légzés Blood flow Cells and tissues

  6. 2 D R = 6Dt Oxygen and CO2 exchange in the lung CO2 Alveolus of the lung ~1 mm Alveolar epithelium O2 Kapillary vessel Kapillary endothelium toxigen ~500 ms Doxigen = 10-9 m2/s tCO2 ~80 ms DCO2 = 6 x 10-9 m2/s

  7. P A + B k k Ha k k << D D k k k -D -D 2 1 1 k = 2 Diffusion limited rections Reaction constants P A + B AB Racting molecules Product Reaction complex

  8. FRAP (Fluorescence Recovery After Photobleaching) Cell D Nucleus

  9. Bleaching FRAP recovery curve Fluorescence intensity Recovery Time

  10. FRAP Myoblast, expressing a compound that contains GFP (Green Fluorescence Protein)

  11. dn dr dt df = - Drot f Rotational diffusion, Florescence anisotropy

  12. kT Drot= fR fR = 8phr3 Measurement with fluorescence anisotropy kT Drot= = 2Drott Df 2 3 8phr

  13. Cell membrane + + + + + + + + + + + + + + + + + + DU Diffusion potencial

  14. RT u+ - u- d(lnc) dU = zF u+ + u- Diffusion potential: „ion mobility” Integration of this equation provides the Goldman-Hodgkin-Katz equation

  15. Biological role of diffusion Osmosis, chemiosmosis The microscopic transport of material October 30, 2007 Lustyik

  16. Osmosis Semipermeable wall or membrane Solvent Solute

  17. Alcohol Alcohol Nollet Abbe, 1748 Water Este Reggel Dutrochet, 1830 Sucrose solution

  18. Models of osmosis: Vant’Hoff law Thermodynamic theory

  19. p = RTc h p = h r g vant’Hoff’s law Pure water p = p Solution Jacobus Hendricus van’t Hoff (1852-1911)

  20. + Vpmp1 p1 p2 mo1 mo2 Thermodynamic theory Chemical potential of the solvent: mo1 = moo + RT ln xo1 Vpm: parcial molar volume

  21. p1 p2 mo1 mo2 Equilibrium: mo1 = mo2 mo1 = moo + RT ln xo1 + Vpmp1 mo2 = moo + RT ln xo2 + Vpmp2

  22. mo1 = moo + RT ln xo1 + Vpmp1 mo2 = moo + RT ln xo2 + Vpmp2 xo2 RT p2 – p1 = ln xo1 Vpm p = mo1 = mo2

  23. RT xo2 p = ln xo1 Vpm One compartment is pure solvent (xo1=1) The solution is incompressible (Vpm=konstans) Solvent concentration is low = c (concentration of the solute) Vant’Hoff’s law: p = RTc

  24. Molality: The number of moles of solute in 1 kg of solvent p = RTc Molarity: The number of moles of solute in 1 kg of solution

  25. Ozmolarity = =molarity x number of dissociated ions 0,3 M glicerin: 0,3 Osmol 0,6 Osmol 0,3 M NaCl (Na+, Cl-):

  26. Isotonic solutions: If their ospmotic pressure is equal Isotonic solutions with blood and cytoplasm: 0,15 M-os (0,87%) NaCl solution 5,5%-os glucose solution 3,8%-os Na-citrate solution

  27. Human and animal cells Plant cells Isotonic solution Hypotonic solution Hypertonic solution

  28. Thermoosmosis Equal concentrations (at start) Cold Warm Dilution concentration Solvent transport fom the warmer to the cooler side

  29. Biological, medical importance and application: • Lysing red blood cells for clinical laboratory • Development of oedemas • Oedema treatment with hypertonic solution • Mg-szulfát: causing diarrhea • Hemodialisis of patients suffering from kidney insufficiency • Dialisis of laboratory specimens

  30. Isotonic solution = isoosmotic solution p = s RTc „reflection” coefficient 0 < s < 1 • Colloid osmotic pressure • Membrane is permeable to the solvent

  31. Dp Szemipermeable membrane s = 1 Hidrostatic pressure difference „Leaky” membrane s < 1 Time „leaky”: permeable to the solvent

  32. DV Shrinking (water uptake) Volume regulation Ion transport, release of isotonic solution Change of cell volume Time Volume regulation of living animal cells

  33. Jk = Lk1 X1 + Lk2 X2 + … + Lkn Xn k = 1, 2, 3, …n Jv = LppDp + LpdDp Jd = LpdDp + LddDp Flow maintained by thermodynamic forces: Onsager equations: Jv: „volume” flow Jd: diffussion (osmotic) flow

  34. JQ Dp Jv Thermoosmosis DT Dc Jm Je DU Diffusion Volume flow Heat flow Pressure difference Concentration difference Temperature difference Elektric potencial difference Electric current Mass transport

  35. Chemiosmosis

  36. CyC Q + + Cytochromsystem ATP ATP Synthase I II O2 ADP NADH NAD+ OH- III OH- ADP ATP Chemiosmosis

  37. CyC Q + + Citokróm rendszer ATP ATP Synthase I II O2 ADP NADH NAD+ OH- III OH- ADP ATP Ca2+ No “Mitochondrial Permeability Transition Pore” +Cy A

  38. Membrare potencial in mitochondria Intact Damaged

  39. Limited and Facilitated Diffusion Additional cellular transport mechanisms

  40. Passive transport (simple diffusion) Facilitated diffusion Cell membrane Lipid bilayer Membrane proteins

  41. www.whfreeman.com

  42. Special, diffusion associated cellular mechanisms Chemotaxis: The ability of an organism or cell to move towards or against concentration gradient of a specific chemical compound Inflamatory response: Migration towards the inflamatory center Bacterial migration for finding regions that it deems favorable Sporulation of amebas

  43. Running: flagella turn counterclockwise „Tumbling”: flagella turn clockwise Random walking on organelle scale.

More Related