1 / 16

By: Brett Kratchman

RedGreen Colorblindness. By: Brett Kratchman. Introduction to Colorblindness.

kimimela
Download Presentation

By: Brett Kratchman

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Red\Green Colorblindness By: Brett Kratchman

  2. Introduction to Colorblindness Colorblindness is a defect of vision affecting the ability to distinguish colors, occurring mostly in males. Color blindness is caused by a defect in the retina or in other nerve portions of the eye. Also known as dichromatism, this disease consists of the inability to differentiate between reds and greens.

  3. Signs and Symptoms The signs and symptoms of colorblindness depend on certain factors: • Is the problem congenital, acquired, partial, or complete? • Does the patient have trouble distinguishing reds and greens? • Is the patient experiencing reduced vision?

  4. Detecting Colorblindness Color vision deficiency is usually detected using colored charts called the Ishihara Test Plates. The plates consist of gray and colored dots. The patient is asked to identify the number in the middle of the circle. After the patient has identified what they see, more testing may commence. Vision test examples.Normal people should see 74. Color deficient people may see D=21.

  5. How are Tests Made? • A random pattern of gray level dots is first put together. • A digit pattern is then added which is defined by yellow/blue variation only. Since most people with red/green colorblindness can see yellow/blue they will be able to see the digit 5 in this test pattern. • Another digit pattern which is defined by red/green variation is added. Here is the pattern composed of the random brightness pattern and the red/green pattern. • Finally all three are added: People with red/green deficiency will not be able to see the red/green pattern and will see the 5. People with normal vision will see both the patterns, but since the red/green is stronger than the yellow/blue, the normal person will see the digit 6.

  6. What's it Like Being Colorblind? Most color-blind people see normally in all other aspects other than the color of their weakened cone. Color-blind people can usually learn by experience to associate certain colors with different sensations of brightness. Many victims of the defect are unaware that they are color-blind. Weak green cone Weak red cone

  7. Green Color Blindness GENE LOCATION Gene OPN1MW GC0XP148439 • Start:148,439,714 bp from pter • End:148,453,078 bp from pter • Size:13,364 bases • Orientation:plus strand (and information)

  8. Red Color Blindness GENE LOCATION Gene OPN1LW GC0XP147547 • Start:147,547,307 bp from pter • End:147,561,950 bp from pter • Size:14,643 bases • Orientation:plus strand (and information)

  9. >ENST00000276348ATGGCCCAGCAGTGGAGCCTCCAAAGGCTCGCAGGCCGCCATCCGCAGGACAGCTATGAGGACAGCACCCAGTCCAGCATCTTCACCTACACCAACAGCAACTCCACCAGAGGCCCCTTCGAAGGCCCGAATTACCACATCGCTCCCAGATGGGTGTACCACCTCACCAGTGTCTGGATGATCTTTGTGGTCATTGCATCCGTCTTCACAAATGGGCTTGTGCTGGCGGCCACCATGAAGTTCAAGAAGCTGCGCCACCCGCTGAACTGGATCCTGGTGAACCTGGCGGTCGCTGACCTGGCAGAGACCGTCATCGCCAGCACTATCAGCGTTGTGAACCAGGTCTATGGCTACTTCGTGCTGGGCCACCCTATGTGTGTCCTGGAGGGCTACACCGTCTCCCTGTGTGGGATCACAGGTCTCTGGTCTCTGGCCATCATTTCCTGGGAGAGATGGATGGTGGTCTGCAAGCCCTTTGGCAATGTGAGATTTGATGCCAAGCTGGCCATCGTGGGCATTGCCTTCTCCTGGATCTGGGCTGCTGTGTGGACAGCCCCGCCCATCTTTGGTTGGAGCAGGTACTGGCCCCACGGCCTGAAGACTTCATGCGGCCCAGACGTGTTCAGCGGCAGCTCGTACCCCGGGGTGCAGTCTTACATGATTGTCCTCATGGTCACCTGCTGCATCACCCCACTCAGCATCATCGTGCTCTGCTACCTCCAAGTGTGGCTGGCCATCCGAGCGGTGGCAAAGCAGCAGAAAGAGTCTGAATCCACCCAGAAGGCAGAGAAGGAAGTGACGCGCATGGTGGTGGTGATGGTCCTGGCATTCTGCTTCTGCTGGGGACCATACGCCTTCTTCGCATGCTTTGCTGCTGCCAACCCTGGCTACCCCTTCCACCCTTTGATGGCTGCCCTGCCGGCCTTCTTTGCCAAAAGTGCCACTATCTACAACCCCGTTATCTATGTCTTTATGAACCGGCAGTTTCGAAACTGCATCTTGCAGCTTTTCGGGAAGAAGGTTGACGATGGCTCTGAACTCTCCAGCGCCTCCAAAACGGAGGTCTCATCTGTGTCCTCGGTATCGCCTGCATGA>ENST00000276348ATGGCCCAGCAGTGGAGCCTCCAAAGGCTCGCAGGCCGCCATCCGCAGGACAGCTATGAGGACAGCACCCAGTCCAGCATCTTCACCTACACCAACAGCAACTCCACCAGAGGCCCCTTCGAAGGCCCGAATTACCACATCGCTCCCAGATGGGTGTACCACCTCACCAGTGTCTGGATGATCTTTGTGGTCATTGCATCCGTCTTCACAAATGGGCTTGTGCTGGCGGCCACCATGAAGTTCAAGAAGCTGCGCCACCCGCTGAACTGGATCCTGGTGAACCTGGCGGTCGCTGACCTGGCAGAGACCGTCATCGCCAGCACTATCAGCGTTGTGAACCAGGTCTATGGCTACTTCGTGCTGGGCCACCCTATGTGTGTCCTGGAGGGCTACACCGTCTCCCTGTGTGGGATCACAGGTCTCTGGTCTCTGGCCATCATTTCCTGGGAGAGATGGATGGTGGTCTGCAAGCCCTTTGGCAATGTGAGATTTGATGCCAAGCTGGCCATCGTGGGCATTGCCTTCTCCTGGATCTGGGCTGCTGTGTGGACAGCCCCGCCCATCTTTGGTTGGAGCAGGTACTGGCCCCACGGCCTGAAGACTTCATGCGGCCCAGACGTGTTCAGCGGCAGCTCGTACCCCGGGGTGCAGTCTTACATGATTGTCCTCATGGTCACCTGCTGCATCACCCCACTCAGCATCATCGTGCTCTGCTACCTCCAAGTGTGGCTGGCCATCCGAGCGGTGGCAAAGCAGCAGAAAGAGTCTGAATCCACCCAGAAGGCAGAGAAGGAAGTGACGCGCATGGTGGTGGTGATGGTCCTGGCATTCTGCTTCTGCTGGGGACCATACGCCTTCTTCGCATGCTTTGCTGCTGCCAACCCTGGCTACCCCTTCCACCCTTTGATGGCTGCCCTGCCGGCCTTCTTTGCCAAAAGTGCCACTATCTACAACCCCGTTATCTATGTCTTTATGAACCGGCAGTTTCGAAACTGCATCTTGCAGCTTTTCGGGAAGAAGGTTGACGATGGCTCTGAACTCTCCAGCGCCTCCAAAACGGAGGTCTCATCTGTGTCCTCGGTATCGCCTGCATGA Gene Sequence

  10. >ENST00000218195ATGGCCCAGCAGTGGAGCCTCCAAAGGCTCGCAGGCCGCCATCCGCAGGACAGCTATGAGGACAGCACCCAGTCCAGCATCTTCACCTACACCAACAGCAACTCCACCAGAGGCCCCTTCGAAGGCCCGAATTACCACATCGCTCCCAGATGGGTGTACCACCTCACCAGTGTCTGGATGATCTTTGTGGTCACTGCATCCGTCTTCACAAATGGGCTTGTGCTGGCGGCCACCATGAAGTTCAAGAAGCTGCGCCACCCGCTGAACTGGATCCTGGTGAACCTGGCGGTCGCTGACCTAGCAGAGACCGTCATCGCCAGCACTATCAGCATTGTGAACCAGGTCTCTGGCTACTTCGTGCTGGGCCACCCTATGTGTGTCCTGGAGGGCTACACCGTCTCCCTGTGTGGGATCACAGGTCTCTGGTCTCTGGCCATCATTTCCTGGGAGAGGTGGCTGGTGGTGTGCAAGCCCTTTGGCAATGTGAGATTTGATGCCAAGCTGGCCATCGTGGGCATTGCCTTCTCCTGGATCTGGTCTGCTGTGTGGACAGCCCCGCCCATCTTTGGTTGGAGCAGGTACTGGCCCCACGGCCTGAAGACTTCATGCGGCCCAGACGTGTTCAGCGGCAGCTCGTACCCCGGGGTGCAGTCTTACATGATTGTCCTCATGGTCACCTGCTGCATCATCCCACTCGCTATCATCATGCTCTGCTACCTCCAAGTGTGGCTGGCCATCCGAGCGGTGGCAAAGCAGCAGAAAGAGTCTGAATCCACCCAGAAGGCAGAGAAGGAAGTGACGCGCATGGTGGTGGTGATGATCTTTGCGTACTGCGTCTGCTGGGGACCCTACACCTTCTTCGCATGCTTTGCTGCTGCCAACCCTGGTTACGCCTTCCACCCTTTGATGGCTGCCCTGCCGGCCTACTTTGCCAAAAGTGCCACTATCTACAACCCCGTTATCTATGTCTTTATGAACCGGCAGTTTCGAAACTGCATCTTGCAGCTTTTCGGGAAGAAGGTTGACGATGGCTCTGAACTCTCCAGCGCCTCCAAAACGGAGGTCTCATCTGTGTCCTCGGTATCGCCTGCATGA>ENST00000218195ATGGCCCAGCAGTGGAGCCTCCAAAGGCTCGCAGGCCGCCATCCGCAGGACAGCTATGAGGACAGCACCCAGTCCAGCATCTTCACCTACACCAACAGCAACTCCACCAGAGGCCCCTTCGAAGGCCCGAATTACCACATCGCTCCCAGATGGGTGTACCACCTCACCAGTGTCTGGATGATCTTTGTGGTCACTGCATCCGTCTTCACAAATGGGCTTGTGCTGGCGGCCACCATGAAGTTCAAGAAGCTGCGCCACCCGCTGAACTGGATCCTGGTGAACCTGGCGGTCGCTGACCTAGCAGAGACCGTCATCGCCAGCACTATCAGCATTGTGAACCAGGTCTCTGGCTACTTCGTGCTGGGCCACCCTATGTGTGTCCTGGAGGGCTACACCGTCTCCCTGTGTGGGATCACAGGTCTCTGGTCTCTGGCCATCATTTCCTGGGAGAGGTGGCTGGTGGTGTGCAAGCCCTTTGGCAATGTGAGATTTGATGCCAAGCTGGCCATCGTGGGCATTGCCTTCTCCTGGATCTGGTCTGCTGTGTGGACAGCCCCGCCCATCTTTGGTTGGAGCAGGTACTGGCCCCACGGCCTGAAGACTTCATGCGGCCCAGACGTGTTCAGCGGCAGCTCGTACCCCGGGGTGCAGTCTTACATGATTGTCCTCATGGTCACCTGCTGCATCATCCCACTCGCTATCATCATGCTCTGCTACCTCCAAGTGTGGCTGGCCATCCGAGCGGTGGCAAAGCAGCAGAAAGAGTCTGAATCCACCCAGAAGGCAGAGAAGGAAGTGACGCGCATGGTGGTGGTGATGATCTTTGCGTACTGCGTCTGCTGGGGACCCTACACCTTCTTCGCATGCTTTGCTGCTGCCAACCCTGGTTACGCCTTCCACCCTTTGATGGCTGCCCTGCCGGCCTACTTTGCCAAAAGTGCCACTATCTACAACCCCGTTATCTATGTCTTTATGAACCGGCAGTTTCGAAACTGCATCTTGCAGCTTTTCGGGAAGAAGGTTGACGATGGCTCTGAACTCTCCAGCGCCTCCAAAACGGAGGTCTCATCTGTGTCCTCGGTATCGCCTGCATGA Gene Sequence

  11. AccessionNumber Codon Nucleotide Amino acid Phenotype CM920309 203 aTGC-CGC Cys-Arg Trichromacy, deutan Genetic Mutations ( G r e e n ) Nucleotide substitutions (missense / nonsense)

  12. AccessionNumber Codon Nucleotide Amino acid Phenotype CM951111 203 aTGC-CGC Cys-Arg Blue cone monochromatism Genetic Mutations ( R e d ) Nucleotide substitutions (missense / nonsense)

  13. What's Being Done Now? ColorMax has recently introduced a tinted lens for glasses. ColorMax lenses are designed to improve the vision of specific colors that look the same to people with red green color deficiencies. However, the vision of other colors has actually been impaired. Other than these lenses, there isn’t much that can be done to cure color blindness, thus making research obsolete.

  14. Protein Affected Rhodospin, the receptor protein in rod cells, crosses the disc membrane seven times. Its odd shape is shared by three receptor proteins in cone cells. Retinal (which absobs light) is shown in purple. The other balls (yellow) represent amino acids which make up the rhodospin structure.

  15. What Can be Done?? Unfortunately, there is nothing that can be done once diagnosed with color blindness. Color blindness is a life long condition that can exclude people from certain jobs such as a pilot or a job that would include electronics. If you suspect colorblindness, you can visit an ophthalmologist or your health care provider. Being aware of the disease is the best way to help someone overcome this disease.

  16. The End

More Related