Multiagent systems and distributed artificial intelligence
This presentation is the property of its rightful owner.
Sponsored Links
1 / 38

Multiagent systems and Distributed Artificial Intelligence PowerPoint PPT Presentation


  • 58 Views
  • Uploaded on
  • Presentation posted in: General

Multiagent systems and Distributed Artificial Intelligence. Agent?( 智能体). Agent: Intelligent Object Intelligent System with Only one agent A problem solving system by A algorithm or A* algorithm. Multiagent system. Intelligent System with two or more agents—Multiagent system

Download Presentation

Multiagent systems and Distributed Artificial Intelligence

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Multiagent systems and distributed artificial intelligence

Multiagent systems and Distributed Artificial Intelligence


Agent

Agent?(智能体)

Agent: Intelligent Object

Intelligent System with Only one agent

A problem solving system by A algorithm or A* algorithm


Multiagent system

Multiagent system

Intelligent System with two or more agents—Multiagent system

Game Playing System by alpha-beta procedure


Why multi agent system

Why Multi-agent system?

Difference between systems with one agent and multi-agents?

See an example.


An example boid

An example: Boid

Who designs and controls the behavior of Bird flocks, Fish schools?

See a computer model for computer simulation of the behavior of bird flocks, fish schools.


3 rules separation

3 rules: Separation

  • Separation: steer to avoid crowding local flockmates


3 rules alignment

3 rules: Alignment

  • Alignment: steer towards the average heading of local flockmates


3 rules cohesion

3 rules: Cohesion

  • Cohesion: steer to move toward the average position of local flockmates


Neighborhood around an agent

Neighborhood around an agent

  • Every agent reacts only to flockmates within a certain small neighborhood around itself.

  • The neighborhood is characterized by a distance and an angle,


Neighborhood

Neighborhood

  • The neighborhood is characterized by a distance (measured from the center of the boid) and an angle, measured from the boid's direction of flight.

  • Flockmates outside this local neighborhood are ignored.

  • The neighborhood could be considered a model of limited perception (as by fish in murky water)


Computer simulation to boids

Computer Simulation to Boids

  • three dimensional computational geometry of the sort normally used in computer animation or computer aided design.

  • See a demo by Java.

  • Sorry. Can not download it.


Obstacle avoidance

obstacle avoidance

  • Obstacle avoidance allowed the boids to fly through simulated environments while dodging static objects.


Demo available

Demo available?

  • See a demo

  • No Sorry here. 


What can we get from the example

What can we get from the example?

  • No Central controller.

  • Every agent: its behavior and the relationship to environments

  • Emergence(突现,涌现)

  • More examples of emergence.


History of multiagent systems

History of Multiagent systems

  • About late 1970s

  • Distributed Artificial Intelligence (DAI) evolved and diversified rapidly.

  • Research and application field. It brings together and draws on results, concepts, and idea from many disciplines: AI, computer science, sociology, economics, organization and management science, and philosophy.


Definition dai

Definition:DAI

  • DAI is the study, construction, and application of multiagent systems, that is, systems in which several interacting, intelligent agents pursue some set of goals or perform some set of tasks.

  • An agent is a computational entity such as a software program or a robot that can be viewed as perceiving and acting upon its environment and that is autonomous in that its behavior at least partially depends on its own experience.


Agent1

agent

  • An agent can be affected in its activities by other agents.

  • Agents try to combine their efforts to accomplish as a group what the individuals cannot in the case of cooperation.

  • Agents try to get what only some of them can have in the case of competition.


Why multiagent system 1

Why multiagent system?-1

  • Modern computing platforms and information environments are distributed, large, open, and heterogeneous.

  • These often exceed the level of conventional, centralized computing because they require processing of huge amounts of data, or of data that arises at geographically distinct locations.


Why multiagent system 2

Why multiagent system?-2

  • They have the capacity to play an important role in developing and analyzing models and theories of interactivity in human societies, and solving problems which it is difficult to solve in conventional method.

  • Many interactive processes among humans are still poorly understood, although they are an integreted part of our everyday life.(There are many things we do not know and we want to know related to multiagent systems)


Major characteristics of multiagent systems

Major characteristics of multiagent systems

  • Each agent has just incomplete information and is restricted in its capabilities.

  • System control is distributed;

  • Data is decentralized; and

  • Computation is asynchronous.


Some attributes of multiagent systems 1

Some attributes of multiagent systems - 1


Some attributes of multiagent systems 2

Some attributes of multiagent systems - 2


Some attributes of multiagent systems 3

Some attributes of multiagent systems - 3


Difference between traditional ai and dai 1

Difference between traditional AI and DAI-1


Difference between traditional ai and dai 2

Difference between traditional AI and DAI-2


Difference between traditional ai and dai 3

Difference between traditional AI and DAI-3


Reasons to study multiagent systems

Reasons to study multiagent systems

  • Technological and application needs:

    Offer a promising and innovative way to understand, manage, and use distributed, large-scale, dynamic, open, and heterogeneous computing and information systems.

  • Natural view of intelligent systems


Another example floys

Another example: Floys

  • flocking Artificial creatures.

  • with the social tendency to stick together


Two behavior rules

Two behavior rules

  • A rule specifying how to relate to one's own kind.

  • A rule specifying how to relate to strangers


How to relate to one s own kind

How to relate to one's own kind

  • Identify two members of your flock that are near to you and try to stay close to them, but not too close.


How to relate to strangers

How to relate to strangers

  • If you are in your territory: When you spot a stranger go after him, if you are close enough - attack

  • If you are not in your territory:If local Floys chase you - run away.


Rules of evolution 1

Rules of Evolution-1

  • eFloys evolve sexually, where each eFloy is the descendent of two parents.

  • Mother and father are selected according to the mechanism of 'Survival of the Fittest by Unnatural Selection'.


Rules of evolution 2

Rules of Evolution-2

  • Fitness is defined by two attributes, energy and safety.

  • If you are an eFloy, you can gain or lose these during your lifetime, and the more you have, the fitter you are


What influences fitness 1

What influences fitness?-1

  • Food is energy: each time you bite a stranger, your energy is increased. Your best option is to reach the stranger first, and eat him all by yourself.

  • If you are a stranger, each time you are bitten, your energy decreases.When your energy ends, you die.


What influences fitness 2

What influences fitness?-2

  • If you move fast, your energy decreases. The faster you move, the more energy you lose.

  • If you are close to your neighbors, your safety increases.The closer you are to your neighbors, the more safety points you get


A demo

A demo.

  • Wait please.


English books

English Books:

  • Artificial Intelligence: A new Synthesis, Nils J, Nilsson, 机械工业出版社,1999,9北京

  • Multiagent Systems: A modern approach to Distributed Artificial Intelligence, Edited by Gerhard Weiss, The MIT Press, Cambridge, Massachusetts, London, English.2000


A demo1

A demo.

Bigeye.au.tsinghua.edu.cn

人工生命/其它媒体/boids/


  • Login