1 / 62

模拟电子技术

模拟电子技术. 制作 绍兴文理学院 戈素贞 2009 年 1 月. 第一章 半导体二极管 第二章 双极结型三极管及放大电路基础 第三章 放大电路的频率响应 第四章 场效应三极管及其放大电路 第五章 集成电路运算放大器 第六章 反馈放大电路 第七章 集成放大器的应用 第八章 直流稳压电源 第九章 模拟电子技术应用举例. 第一章 半导体二极管及其基本电路.

Download Presentation

模拟电子技术

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 模拟电子技术 制作 绍兴文理学院 戈素贞 2009年1月

  2. 第一章 半导体二极管 • 第二章 双极结型三极管及放大电路基础 • 第三章 放大电路的频率响应 • 第四章 场效应三极管及其放大电路 • 第五章 集成电路运算放大器 • 第六章 反馈放大电路 • 第七章 集成放大器的应用 • 第八章 直流稳压电源 • 第九章 模拟电子技术应用举例

  3. 第一章 半导体二极管及其基本电路 本章主要介绍半导体的基本知识、PN结,半导体二极管。(物理结构、工作原理、特性曲线、主要参数、基本电路及分析方法、应用) 1.1半导体的基本知识 1.2 PN结的形成及特性 1.3 半导体二极管 1.4 二极管基本电路及其分析方法 1.5 特殊二极管

  4. 1.1半导体的基本知识 物体: 导体 半导体 (导电性介于导体与绝缘体之间) 绝缘体 化合物半导体:砷化镓(GaAs)等 可掺杂或制成其他化合物半导体的材料:硼(B+3)、磷(P+5)、铟(In+3)、锑(Sb+5)、铝(Al+3)等. 元素半导体:硅(Si)、锗(Ge)等

  5. 硅(Si)、锗(Ge)原子结构: ) ) ) ) ) ) ) Si+14 2 8 4 Ge+32 2 8 18 4 ) ) )     ))) )   外层电子称为价电子,它决定物体的化学性质和导电性。 半导体特点:1)受外界光和热的刺激,导电能力显著变化。 2)掺杂后,其导电能力也显著变化。这是由半导体的 结构决定的。

  6. 价电子 硅原子 1.1.1半导体的共价键结构 一共价键:  由于晶体内,各原子处于同等地位且各原子之间靠得很近,相邻的原子相互影响,使原来分属于每个原子的价电子成为两个原子共有,形成为共价键。见右图,共价键内的两个电子称为――束缚电子。 +4 +4 +4 +4 +4 +4 +4 +4 +4 本征半导体的共价键结构

  7. 空穴 自由电子 二、自由电子和空穴 共价键中的电子,受两个原子核引力的约束,只有在激发时,少数电子获得一定的动能挣脱共价键和束缚成为自由电子。见右图,在原共价键中留下一个空位称空穴,在本征半导体中,自由电子与空穴是成对出现的,为空穴电子对。 +4 +4 +4 +4 +4 +4 激发:当电子得到足够的能量挣脱共价键的束缚,成为自由电子的现象称为激发。 复合:与激发相反的过程 +4 +4 +4 参见动画1-1

  8. 三、载流子 可以自由运动的带电粒子,包括自由电子和空穴。 半导体特点:空穴是半导体区别于导体的一个重要特点。 参见动画1-2

  9. 半导体的导电作用(半导体中电流的产生) (在绝对0K(-273℃)时,(可由液态氮得此温度)(可用于速冷食品),单晶硅中,无热运动(振动),无激发现象,无自由电子(载流子),电子都以束缚电子存在,可称绝缘体)    在常温下,300K(27℃)时,由于一定温度(对应) —— 一定能量(对应) —— 一定热运动——激发现象——载流子(自由电子,空穴)当外加电压就会形成自由电子和空穴的定向运动――即电流。 如果电子流形成的电流为ie,串入安培计,其读数是多少?     读数应为:ie + io=2ie 以后直接说空穴的运动。

  10. 五、载流子的浓度  由于在本征半导体内,自由电子和空穴是成对出现的。 自由电子浓度=空穴浓度(=AT3/2e-Eg/2KT) Eg----挣脱共价键所需要的能量 单位ev(电子伏)(禁带宽度)锗:0.68ev,硅:1.1ev A----系数 T----温度(K) K----波耳兹曼常数(1.38×10-23J/K)

  11. 六 半导体的特性 • 半导体的特性之一 • 在半导体中,当温度T↑→ 激发↑→ 载流子浓度↑→外加压不变,但i↑,即T↑ → 半导体的导电性大大增加。利用该特性可制成半导体热敏元件。 • 该特性又可造成半导体器件的温度稳定性差。 • 半导体的特性之二 • 在半导体中,当光照↑→ 激发↑→ 载流子浓度↑→外加压不变,但i↑,即光照↑ → 半导体的导电性大大增加。利用该特性可制成半导体光敏元件。

  12. 1.1.2杂质半导体 在本征半导体中人为的掺入微量元素作为杂质,可使半导体的导电性发生显著变化.掺入的杂质主要是三价或五价元素,掺入杂质的本征半导体称为杂质半导体。

  13. 正离子 磷原子 +4 +5 自由电子 N 型半导体 在硅或锗的晶体 中 掺入少量的 五价元 素,如磷, 则形成N型半导 体。 +4 +4 +4 +4 +4 多余价电子 +4 +4 +4

  14. (1)N型半导体(电子型半导体) 在本征半导体中掺入五价元素磷P(15), (或砷As33,锑Sb51)比例为:104:1(万分之一) ) ) ) P+15 2 8 5 ) ) ) 掺杂后,由于磷原子周围都是Si原子,所以其外层的4个价电子形成共价键,多余的一个价电子受核的引力比共价键的束缚弱得多,所以较少的能量就使其挣脱磷原子的吸引成为自由电子,掺入一个磷原子,给出了一个自由电子,故磷为施主杂质(施主原子)(N型杂质)。 自由电子带负电,英文为Negative,故称N型半导体。

  15. 在N型半导体中, 自由电子数== 掺杂原子数 载流子 激发产生的自由电子 空穴 由激发产生 所以自由电子数远大于空穴数,所以自由电子称为多数载流子(多子),空穴称为少数载流子(少子)(由热激发形成)

  16. 第2章 1.1.4 少数载流子 多数载流子 正离子 N 型半导体结构示意图 在N型半导中,电子是多数载流子,空穴是少数载流子。

  17. (2)P型半导体(空穴型半导体) 在半导体中掺入微量三价元素如Al(+13)、Ga(+31)…….. ) ) ) Al+132 8 3 ) ) ) 由于Al外层三个价电子与周围Si原子形成共价键时,因缺少一个电子,在晶体中便产生一个空位,当相邻共价键上的电子获得足够的能量时,有可能填补这个空位,原来硅原子的共价键则因为缺少一个电子形成了空穴。 空穴带正电(Positive)。英文字头为P,故称为P型半导体. P型半导体中,空穴为多子,主要由掺杂形成,自由电子为少子,由热激发形成 空穴很容易俘获电子,使杂质原子成为负离子,三价杂质因而也称为受主杂质,用Al掺杂时, Al为受主杂质.

  18. +3 硼原子 +4 负离子 填补空位 P型半导体 在硅或锗的晶体中 掺入少量的三价元 素,如硼,则形成P 型 半导体。 +4 +4 +4 +4 +4 空穴 +4 +4 +4

  19. 负离子 电子是少数载流子 空穴是多数载流子 P 型半导体结构示意图

  20. 1.2 PN结的形成及特性 1.PN结的形成 2.PN结的单向导电性, 包括四个问题 3.PN结的反向夹穿 4.PN结的电容效应

  21. 空间电荷区 第2章 1.2 P区的空穴向N区扩散并与电子复合 内电场方向 N区的电子向P区扩散并与空穴复合 1 PN 结的形成 用专门的制造工艺在同一块半导体单晶上,形成 P型半导体区域 和 N型半导体区域,在这两个区域的交界处就形成了一个PN 结。 P 区 N 区

  22. 多子扩散 少子漂移 PN结的作用: PN结阻碍多子的扩散,促进少子的漂移 空间电荷区 N区 P 区 内电场方向

  23. P型N型半导体结合,经足够长的时间后,PN结厚度一定,且杂质掺杂越多,则空间电荷区越窄,反之越宽。P区N区掺杂浓度不一样,则界面两边的PN结的厚度不一样。PN结形成后,存在两个动平衡:P型N型半导体结合,经足够长的时间后,PN结厚度一定,且杂质掺杂越多,则空间电荷区越窄,反之越宽。P区N区掺杂浓度不一样,则界面两边的PN结的厚度不一样。PN结形成后,存在两个动平衡: (1)多子的扩散运动与少子的漂移运动形成的动态衡。 (2)P区和N区内激发与复合也处于动态平衡。 参见动画1-3

  24. 1.2.2 PN 结的单向导电性 外电场方向 E 一、外加正向电压 外电场驱使P区的空穴进入空间 电荷区抵消一部分负空间电荷 P 区 N 区 N区电子进入空间电荷区 抵消一部分正空间电荷 内电场方向 R

  25. 空间电荷区变窄 I 外电场方向 E 外加正向电压 P 区 N 区 内电场方向 R 扩散运动增强,形 成较大的正向电流

  26. 故PN结外加正向电压 ①正向电压,使外电场与内电场方向相反,即剥弱内电场,多子的扩散能力增加,与部分空间电荷离子中和,使PN结变窄,使I 扩>I漂,从而外电路中形成的正向电流if =I(扩),且正向电压增加,if增加。 ②导通时,由于空间电荷区栽流子较多,所以导通电阻很小。称PN结处于导通状态。 参见动画2-4

  27. 二、 外加反向电压 空间电荷区变宽 IR 外电场方向 E 多数载流子的扩散运动难于进行 外电场驱使空间电荷区两侧的空穴和自由电子移走 P 区 N 区 内电场方向 R 少数载流子越过PN结形成很小的反向电流

  28. PN结加反向电压时: ①外电场与内电场同相,使PN结增厚,使I扩趋于零,iR=Is= i 漂 ②电阻很大,称反向截止。 参见参见动画2-5

  29. S PN结的单向导电性: 1、PN结加正向电压:PN结所处的状态称为正向导通,其特点:PN结正向电流大,PN结电阻小。 相当于开关闭合 2、PN结加反向电压:PN结所处的状态称为反向截止,其特点:PN结反向电流小,PN结电阻大。 相当于开关打开

  30. 判断题 • 1 PN结的作用是阻碍多子的扩散,促进少子的漂移。 • 2 P型半导体中多数载流子是空穴,空穴带正电,所以P型半导体呈现正极性。 • 3 N型半导体中多数载流子是电子,电子带负电,所以N型半导体呈现负极性。 • 4 随着半导体的导电,经过一段时间半导体中的载流子就被耗尽了。

  31. I / mA 反向特性 600 锗 管 正向特性 400 VBR反向击穿电压 硅 管 200 –100 –50 0.4 0 0.8 U / V – 0.1 反向击 穿特性 – 0.2 Vth死区电压 (门坎电压) 硅管的伏安特性 正向压降0.2--0.3V 正向压降0.6--0.8V 三、PN结的v----I特性的表达式

  32. PN结正向V—I特性的表达式为: 其中, iD、、uD:流过PN结的电流和加在PN结两端电压, IS:反向饱和电流,分立元件典型值:10-8----10-14A UT:温度的电压当量 UT=KT/q k:波兹曼常为1.38×10-23J/K T: 绝对温度(K), q: 电子电荷1.6×10-19C。 当T=27℃=300K时,得UT=26mV。

  33. 1.2.3 PN结的反向击穿 电击穿:当PN结反向电压增大到VBR时,反向电流突然增加如上图,这个现象就称为PN结的反向击穿(电击穿),VBR称反向击穿电压,电击穿是可逆的,条件:反向电压*反向电流≤PN结容许的耗散功率。 热击穿:在电击穿情况下,若V<VBR,管子仍能恢复原来的状态,(作稳压管)。 一旦电击穿,则PN结上压降很大,电流很大,功耗很大,转变为热,使PN结温↗ 电流↗ 恶性循环,最终,二极 管(PN结)烧坏,即热击穿。

  34. 所以,二极管(PN结)的反向工作电压为VBR的一半,留有余量,以保管子安全运行。所以,二极管(PN结)的反向工作电压为VBR的一半,留有余量,以保管子安全运行。 (电击穿)反向击穿为: 雪崩击穿, 齐纳击穿, 雪崩击穿:PN结加一定的反压→空间电荷区的电场较强↗ ,通过空间电荷区的电子和空穴的运动能力↗,在空间电荷区中的空穴和电子与晶体原子碰撞,发生碰撞电离,新产生的空穴、电子获能量参与碰撞,产生载流子的雪崩倍增效应,载流子的迅速增加,使反向电流急剧增加。PN结就发生了雪崩击穿。 齐纳击穿:当PN结掺杂浓度较大,PN结很窄(μm数量级),而PN结电阻>>P区、和N区的体电阻,所以,外加电压几乎全部降到PN结上,使单位μm上压降很大,也即电场很强,能拉出共价键中的束缚电子,造成电子——空穴对。形成较大的反向电流。

  35. 1.2.4 PN结电容 势垒电容 PN结电容 扩散电容 1. 势垒电容 PN结中空间电荷区的电荷数量随外加电压变化 所形成的电容称为势垒电容,用 CB来表示。势垒电 容不是常数,与PN结的面积、空间电荷区的宽度 和外加电压的大小有关。 PN结加正压时,δ小,CB大,1/ωCB小,但由于并联 的结电阻更小,所以CB的作用不明显。

  36. 2. 扩散电容 由于N区电子和P区空穴在相互扩散过程中,P区的电子,N区的空穴的积累所引起的电容称为扩散电容,用 CD来表示。 PN正偏时,扩散电容较大,反偏时,扩散电容可以忽略不计。 总之,CPN=CB+CD PN结加反压时, CPN≈CB PN结加正压时, CPN≈CD

  37. 正极引线 正极引线 二氧化硅保护层 正极 触丝 PN结 P型区 PN结 N型硅 N型锗 支架 负极 外壳 负极引线 负极引线 面接触型二极管 二极管的符号 1.3半导体二极管 1.3.1 二极管的结构 点接触型二极管

  38. 1.3.2 二极管的伏安特性 第1章 1.3 I / mA 反向特性 锗 管 6 4 正向特性 硅 管 2 – 40 – 80 0 0.4 0.8 U/ V –0.1 –0.2 死区电压 反向特性 死区电压 正向压降0.2--0.3V 锗管的伏安特性 正向压降0.6--0.8V +U – U=f(I) I I / mA B 600 正向特性 400 200 A –100 –50 0.4 0 0.8 D U / V Vth – 0.1 反向击 穿特性 – 0.2 E 硅管的伏安特性

  39. iD =IS(e UD/UT-1) iD、UD为流过PN结的电流和加在PN结两端电压, IS:反向饱和电流,分立元件典型值:10-8----10-14A k:波兹曼常为1.38×10-23J/K UT:温度的电压当量UT= KT/q T:绝对温度 q:电子电荷1.6×10-19C

  40. 1.3.3 二极管的主要参数 1最大整流电流IF 是管子长期运行,允许通过的最大正向平均电流,由管子的功耗所决定, 使用 时注意环境温度和散热条件。 2反向击穿电压VBR 管子反向击穿时的电压值。 3 最高反向工作电压 为1/2 VBR    4 反向电流IR 指管子未击穿时的反向电流, IR愈小,管子的单向导电性愈好。 5 极间电容: CB CD 其它如工作频率,动态电阻反向恢复时间等略。

  41. 序号 器件类型 材料极性 电极数目 1.3.4半导体器件命名方法 • 如: 2CZ 52

  42. 1.4 二极管基本电路及其分析方法 iD ΔiD + ΔvD - rd Q ΔiD vD (b) ΔvD (a) iD vD iD VD vD VD iD rD Q(0.7V,1mA) Vth ΔiD vD Vth 1.理想模型: V—I特性: 符号(模型) 3.折线模型: V—I特性: 符号(模型) 2.恒压降模型: V—I特性: 符号(模型) 4.小信号模型: V—I特性: 符号(模型)

  43. 说明:若外加电压u可分为直流电压UQ和交变电压Δu ,于是u =UQ+Δu,如图(C),UQ直流电压单独作用引起的电流IQ如图(C1)。称Q点为静态工作点Q(VQ,IQ)。 若Δu=ΔUm sinωt。 ΔUm很小(小信号),工作点在Q点附近沿特性曲线运动,在Q点附近用直线代曲线(线性化),认为工作点在直线上移动,uD变化Δu ,对应电流变化Δi,rd=Δu/Δi=1/KQ,得小信号模型如图(C2) rd——称 动态电阻 或 微变电阻 微变电阻rd的求法: 1)由曲线求 : rd=Δu/Δi=1/KQ

  44. 2)由V—I表达式 因为 两边对VD微分: gd = d iD / d uD = IS euD/UT/ UT ≈iD/ UT =IQ/ UT Q Q Q Q  ∴ rd = 1/ gd = UT/ IQ≈26mV/ IQ T=273 + 27 =300K vT = KT/q = (1.38×10-23 × 300)/1.6 × 10-19 =26 mV 模型: 1 → 2 → 3 精确、复杂

  45. A DA Y B DB R –12V 二极管的应用范围很广,它可用于整流、检波、限幅、 元件保护以及在数字电路中作为开关元件。 例1:下图中,已知UA=3V, UB=0V, DA、DB为锗管, 求输出端Y的电位并说明二极管的作用。 + 0.2V– 解: DA优先导通,则 UY=3–0.2=2.8V DA导通后, DB因反偏而截止, 起隔离作用, DA起钳位作用, 将Y端的电位钳制在+2.8V。 (二极管用恒压降模型 )

  46. 例2 开关电路(钳位电路)。如图1.15所示,二极管为同一型号的理想元件,试确定图中的电流I和电压U0的大小。

  47. 例3 单相半波整流电路。如图1.17所示,设ui=15sinωt V,二极管视为理想二极管,试绘出u0的波形。

  48. 第1章 1.3 3 3  2 –6 例2:下图是二极管限幅电路,D为理想二极管,ui= 6 sin t V, E= 3V,试画出uo波形 。 ui/ V R 6 uR D  t uD  0 2 uo ui E 3V uo /V uR?  t 0

  49. –3 3 3 –3 例3:双向限幅电路 ui/ V R 6 uR D E 3V uD uo ui  t E 3V  0 2 D uo /V  t 0

  50. 1.5 特殊二极管 IF 正极 反向击穿区 正向特性 UZ 0 DZ Imin UF 负极 符号 IZmax 伏安特性 1.5.1稳压管 稳压管:稳压管是一种特殊的面接触型半导体二极管。 工作在反向击穿区

More Related