1 / 31

משרד החינוך והמזכירות הפדגוגית האגף לתכנון ופיתוח תכניות לימודים

מנהלת מל"ם המרכז הישראלי לחינוך מדעי טכנולוגי ע"ש עמוס דה שליט. משרד החינוך והמזכירות הפדגוגית האגף לתכנון ופיתוח תכניות לימודים. המרכז הארצי למורי הביולוגיה. האוניברסיטה העברית בירושלים המרכז להוראת המדעים. Climate Change.

kendis
Download Presentation

משרד החינוך והמזכירות הפדגוגית האגף לתכנון ופיתוח תכניות לימודים

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. מנהלת מל"ם המרכז הישראלי לחינוך מדעי טכנולוגי ע"ש עמוס דה שליט משרד החינוך והמזכירות הפדגוגית האגף לתכנון ופיתוח תכניות לימודים המרכז הארצי למורי הביולוגיה האוניברסיטה העברית בירושלים המרכז להוראת המדעים

  2. Climate Change Since the industrial revolution, atmospheric levels of greenhouse gases have been rising, mainly due to burning of fossil fuels. With them, mean global temperatures have been rising.

  3. Application of biochar to soil results in long term sequestration of fixed carbon

  4. Soil fertility • Biochar use agricultural plants 2006 Biochar applied once in 2003 Colombian Llanos (N=3) Major, J., M. Rondon, D. Molina, S.J. Riha and J. Lehmann, 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil 333, 117-128.

  5. Value of soil application of Biochar • Increases soil fertility • nutrient retention • water holding capacity • cation exchange capacity • Increases beneficial soil microorganisms • Reduces nutrient runoff, absorbs ammonia and ammonium • Absorbs pesticides and soil toxins • Reduces agricultural N2O and CH4 emissions

  6. 240 Plant growth promotion under optimal fertigation 19 Biochar (%) a 0 200 1 a b 3 17 Normalized pepper leaf area (%) b 160 Peppergrowth 120 15 70 75 80 85 65 0 3 5 Time after planting (days) a b Pepper canopy dry weight (g) c 1 0 Biochar Content (%) Graber et al. 2010, Plant and Soil

  7. Biochar (%) 300 0 1 a a 3 ab a ab Tomato growth Normalized tomato leaflet area (%) 200 b ab b b 100 45 55 65 Time after planting (days) a a 600 a Normalized tomato plant height (%) b b 400 b a Biochar (%) 0 200 1 b 3 35 45 55 65 Time after planting (days) Graber et al. 2010, Plant and Soil

  8. נביטת חיטה 60 100 75 40 Height (cm) Germination (%) 50 0 20 1 25 1 % GHW 0 0 0 0 4 8 12 0 10 20 30 Time after planting (days) Time after planting (days)

  9. Biochar • Increases soil fertility: nutrient retention, water holding capacity, cation exchange capacity • Increases beneficial soil microorganisms • Reduces nutrient runoff • Absorbs pesticides and soil toxins • Reduces agricultural N2O and CH4 emissions Biochar has a beneficial effect on plants also on the background of full fertilization What other effects?

  10. 20 20 10 10 0 0 0 2 4 6 8 Effect of soil biochar application on leaf gray mold disease a AUDPC±SE (%*days) Biochar(%) a b a 42.3±8.3 10.5±3.8 0 Biochar(%) b 3 Result: Suppression of gray mold on tomato and sweet pepper leaves b a Disease severity (% leaf coverage) a 0 a 3 0 3 b b b 0 2 4 6 Biochar(%) Citrus wood biochar Time after infection (days) Elad et al, Phytopathology 2010

  11. 100 75 50 25 0 15 30 45 60 100 75 50 25 0 15 30 45 60 100 75 50 25 0 15 30 45 60 Effect of soil biochar application on tomato leaf powdery mildew Upper leaves Biochar (%) AUDPC±SE (%*days) (Leveillula taurica) a 269±19 57±10 10± 3 0 a b 1 b 3 b a Middle leaves 801±74 112±24 70±16 a 0 Disease severity (% leaf coverage) b 1 b 3 b a Lower leaves a 1419±173 164± 39 106± 22 0 b 1 b 3 b Citrus wood biochar Time after infection (days) Elad et al, Phytopathology 2010

  12. Effect of soil biochar application on pepper leaf powdery mildew Biochar (%) b Upper a 0 5 b Middle Leaf height a b Lower a Result: Suppression of powdery mildew on tomato and sweet pepper leaves 10 20 0 Disease severity (% leaf coverage) Elad et al., 2010 Phytopathology

  13. 80 60 40 20 0 30 55 80 105 Long term effect of soil application on leaf powdery mildew 0 1 3 a Biochar concentration in soil (%) a b Disease severity (% leaf coverage) a b b a b Time after infection (days) 3 1 0 b Biochar concentration in soil (%) b a 0 600 1200 1800 Disease severity AUDPC (%*days) Elad et al, Phytopathology 2010

  14. 0 5 10 15 20 Broad Mite in Pepper Biochar concentration in soil (%) 5 b 3 b 0 a Severity (%) Control 3% Biochar No biochar 3% biochar אקרית העיוותים (Polyphagotarsonemus latus) Elad et al, Phytopathology 2010

  15. Effect of parameters of biochar treatment :

  16. Effect of biochar treatment parameters: 0 20 40 60 Greenhouse waste (GHW) 3.0 1.0 0.5 - b a Biochar concentration (%) 3.0 1.0 0.5 - b GHW c a Disease severity (%) Elad et al, Phytopathologia Mediterranea (2012)

  17. Olive pomice (OP) 0 20 40 60 3.0 1.0 0.5 - OP b a 3.0 1.0 0.5 - OP b Biochar concentration (%) a 3.0 1.0 0.5 - ab OP b a Disease severity (%) 0 10 20 30 Elad et al, Phytopathologia Mediterranea (2012) 0 5 10 15

  18. 0 20 40 60 b (EW) 3.0 1.0 0.5 - c ab a Biochar concentration (%) Eucalyptus wood (EW) 3.0 1.0 0.5 - b a Disease severity (%) Results: Suppression of foliar diseases in all cases Efficacy may differ with the biochar (temperature and biomass source) Three weeks of incubation are needed

  19. Plant pathogens infect foliar plant parts • Biochar applied to soil (root zone) Induced resistance (systemic) What plant genes may be responsible for the effect of biochar on plant diseases?

  20. Systemic resistance pathways WRKY (FaWRKY1) Transcription factors involved in plant responses to biotic and abiotic stresses WRKY PRs PR1 PR1 (FaPR1) SA dependent related marker Systemic acquired resistance (SAR) Induced systemic resistance (ISR) PR5 (Faolp2)Osmotin-Like (down regulated by ABA, induced by SA and wounding) PR5 LOX (Falox) Lox Lipoxygenase, central in JA signaling, involved in ISR Necrotrphs Ethylene (ET) Jasmonic acid (JA) Priming for defenses Biotrphs Salycilic acid (SA) PR10(Fra a3) induced under stress and act as common allergens PR10 BIOCHAR ?

  21. מדידת כמות יחסית על ידי QPCR Control Extraction total RNA Reverse Transcriptase Treatment cDNA QPCR Normalisation with house keeping gene (GAPDH) Relative quantification/control plant

  22. Effect of biochar amendments on expression of defense related genes in strawberry plants B 160 Citrus wood 9 mths Greenhouse waste (3 wks) 210 A 135 Biochar conc. (%) 180 110 0 150 15 1 15 3 Biochar induces SAR and ISR Relative mRNA level (Fold Change) 10 10 5 5 0 Fra a3 Falox FaPR1 Faolp2 FaWRKY1 0 FaPR1 Faolp2 Fra a3 Falox FaWRKY1 PR1 PR5 PR10 Lox WRKY PR1 PR5 PR10 Lox WRKY S A R ISR S A R ISR Total RNA was isolated from leaves and subjected to qPCR analysis. Transcripts levels were normalized to FaGAPDH and 18-26S interspacer RNA genes and expressed relative to no biochar amendment plants using the Δ Δ Ct Ct method. Meller Harel et al, 2011

  23. Enhanced resistance to Gray mold in strawberry plants grown on biochar 100 Biochar, conc. (%) AUDPC ±SE 0 50 Greenhouse waste (GHW) 1 GHW 3 a 0 Citrus wood (CW) 3 0 4 9 7 a B. cinerea b b a b Disease severity (rot area, mm2) after 9 days: Time after inoculation (days) Meller Harel et al, 2011

  24. Effect of Botrytis cinerea infection on expression of defense related genes (3 weeks GHW biochar + 7 days post inoculation) Biochar conc. (%) B. cinerea 40 Greenhouse waste Botrytis cinerea - + - + 1 1% primed PR5 for expression in Bc infection - + 1 3 30 150 3 B. cinerea (Bc)(necrotroph) induces SAR and ISR 20 100 10 Relative mRNA level (Fold Change) 0 Faolp2 FaPR1 Fra a3 Falox FaWRKY1 50 PR1 PR5 PR10 Lox WRKY PR1 PR5 PR10 Lox WRKY S A R ISR S A R ISR 0 FaPR1 Faolp2 Fra a3 Falox FaWRKY1 Meller Harel et al, 2011

  25. Enhanced resistance to Powdery mildew in strawberry plants grown on biochar Biochar, conc. (%) AUDPC ±SE a 80 0 Citrus wood (CW) 1 a CW 3 b - - 40 after 28 days: a b a P. aphanis b b 0 Disease severity (% leaf coverage) 0 10 20 30 40 No biochar 3% CW Time after infection (days) Meller Harel et al, 2011

  26. Effect of Podosphaera aphanis infection on expression of defense related genes (9 momths with biochar + 28 days after inoculation) Citrus wood Biochar P. conc. (%) aphanis 160 135 110 100 Podosphaera aphanis - + - + P. aphanis(biotroph) induces SAR 1 - + 60 1 Priming 3 85 Relative mRNA level (Fold Change) 3 70 30 10 5 0 PR1 PR5 PR10 Lox WRKY FaPR1 Faolp2 Fra a3 Falox FaWRKY1 0 S A R ISR FaPR1 Faolp2 Fra a3 Falox FaWRKY1 PR1 PR5 PR10 Lox WRKY S A R ISR Meller Harel et al, 2011

  27. Systemic resistance pathways Induced systemic resistance (ISR) Systemic acquired resistance (SAR) Ethylene (ET) Jasmonic acid (JA) Salycilic acid (SA) BIOCHAR

  28. נקבוביות הביופחם משמשת מקלט למקרואורגניזמים ייחודיים • חומרים המצויים בביופחם מעודדים מקרואורגניזמים מסויימים ומעכבים אחרים

  29. Stimulation of beneficial soil microbial consortium Biochar conc.(%) General bacteria Rhizosphere 3 1 Growth medium 0 1*107 1*108 1*109 Rhizosphere Bacillus spp. Growth medium 1 10 100 1,000 Rhizosphere Trichoderma spp. Growth medium 1*102 1*104 1 Population (CFU/g)

  30. Biochar improves plants growth. • Biochar induces in plants resistance towards pathogens. • Changes in microbial populations. • Biochar-borne chemicals and/or biochar-induced microbial populations are responsible for these activities.

  31. Research in cooperation with Institute of Soil, Water and Environmental Sciences Institute of Plant Protection Yigal Elad Omer Frenkel Yael Meller-Harel Dalia Rav David Menahem Borenshtein Ran Shulchani Sergey Segal Amit Kumar Jaiswal Zeraye Mehari Haile Ellen R. Graber Eddie Cytryn Max Kolton Avner Silber Larissa Kautsky Maya Ofek Dror Minz Hebrew University Faculty of Agriculture Zohar Pasternak Inst. of Agricultural Engineering Beni Lew Cited publications http://www.agri.gov.il/pages/788.aspx • Elad, Y., Rav David, D., Meller Harel, Y., Borenshtein, M., Ben Kalifa, H., Silber, A. and Graber, E.R. (2010) Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 100:913-921. • Graber, E.R., Meller Harel, Y., Kolton, M., Cytryn, E., Silber, A., Rav David, D., Tsechansky, L., Borenshtein, M., Elad, Y. (2010) Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil 337:481–496. • Kolton, M., Meller Harel, Y., Pasternak, Z., Graber, E.R., Elad, Y. and Cytryn, E. (2011) Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants.Applied and Environmental Microbiology 77:4924-4930. • Elad, Y., Cytryn, E., Meller Harel, Y., Lew, B., and Graber, E.R. (2011) The Biochar Effect: plant resistance to biotic stresses. Phytopathologia Mediterrenea 50: 335−349.

More Related