Future in particle physics
Download
1 / 19

Future in Particle Physics! - PowerPoint PPT Presentation


  • 120 Views
  • Uploaded on

Future in Particle Physics!. ECFA: Future of Accelerator-Based Particle Physics in Europe HEPAP: Long Range Planning for U.S. High-Energy Physics ACFA: coming up soon?. F. Linde, 14-December-2001, Amsterdam. Input to ECFA report. Laboratories: L. Maiani: “CERN: views for the future”

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Future in Particle Physics!' - kelsey-hurley


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Future in particle physics
Future in Particle Physics!

ECFA:

Future of Accelerator-Based Particle Physics in Europe

HEPAP:

Long Range Planning for U.S. High-Energy Physics

ACFA:

coming up soon?

F. Linde, 14-December-2001, Amsterdam


Input to ecfa report
Input to ECFA report

  • Laboratories:

  • L. Maiani: “CERN: views for the future”

  • A. Wagner: “Views on the future of DESY”

  • J. Bagger: “HEPAP sub-panel on long range planning for U.S. High energy physics”

  • F. Gilman: “The U.S. high energy physics advisory panel white paper”

  • A. Skrinsky: “Russian HEP activity: status and perspectives”

  • S. Komamiya: “Report on ACFA activities”

  • Projects:

  • F. Gianotti: “Physics perspectives with the LHC within Standard Model”

  • P. Sphicas: “Physics perspectives with the LHC: SuSy and other physics beyond SM”

  • K. Hubner: “New acceleration methods and plans for high intensity proton machines”

  • R. Klanner: “Future perspectives for ep physics”

  • D. Miller: “Physics potential and concrete perspectives for <1 TeV linear colliders”

  • P. Zerwas: “Muti-TeV lepton colliders: the physics potential”

  • J.P. Delahaye: “CLIC, a two beam multi-TeV e linear collider”

  • A. de Roeck: “CLIC, a compact linear collider: experimentation and physics potential”

  • M. Tigner: “Perspectives and experimental environment of a muon collider”

  • P. Janot: “What physics at muon colliders”

  • K. Peach: “Neutrino factories”


Physics challenges
Physics challenges

  • “recent” discoveries:

    • three families (LEP)

    • t-quark discovered (Tevatron)

    • indirect Higgs mass (LEP/Tevatron)

    • -oscillations (Kamiokande)

    • CP violation in B system (BaBar/Belle)

  • many questions, e.g.:

  • matter  anti-matter?

  • dark matter?

  • three families?

  • generation of mass?

  • proton decay?

  • charge quantization?

  • unification?


Progress within the standard model
Progress within the Standard Model

  • Improvements:

  • masses: mW, mt, …

  • couplings: s, G, …

  • other: sin2w, CKM, g-2, ...

  • Outstanding issues:

  • Higgs mechanism

  • quark-gluon plasma

  • CP violation quark sector

  • neutrino sector


Progress beyond the standard model
Progress beyond the Standard Model

  • Approaches:

  • Rare/forbidden decays

  • New particles

  • New interactions

  • Unification

  • Unknown: look into the sky!



Future g projects
Future “G$” projects

  • Hadron-hadron (CERN & Fermilab)

    • LHC upgrades:

      • Luminosity upgrade 1034 1035 cm-2s-1 “easy” (you want it?)

      • Energy upgrade difficult (we might want it!)

    • Very large hadron colliders: VLHC

  • Lepton-lepton (CERN, DESY, US, Japan)

    • ee linear colliders: TESLA, NLC, JLC, CLIC

    •  collider

  • Intense neutrino beams (CERN, FermiLab, Japan)

    • ,,e,e


Very large hadron collider
Very large hadron collider

  • VLHC-1

  • VLHC-2

  • s (TeV)

  • 30-40

  • 175

  • B-field (T)

  • 2

  • 10-12

  • Lumi (cm-2s-1)

  • 1034

  • 1035

  • Fermilab

  • VLHC phased project

  • (240 km circumference tunnel)

  • Issue: cost, cost and cost

dipole magnets interesting

(transmission line)

  • Physics

  • The unknown, new, exciting!

  • Continuation of LHC

  • But also clear you only embark on this well after the LHC has cleared the TeV energy range


Intense neutrino beams collider
Intense neutrino beams ( collider?)

  • SPL: Ep 2-15 GeV, 1016 p/s

  • target: p  

  • -decay:   

  • -cooling: reduce E, E50 GeV

  • -decay:  decay in “ring”

  • -collider: future music

pee

ee

Japan, CERN & FermiLab

  • Physics

  • “Near” (<1 km, high rate)

    • structure functions

    • CKM matrix

    • new physics

  • “Far” (102-104 km, low rate)

    • oscillations

    • CP

neutrino

beam

neutrino

beam


Collider
 collider

  • Everything ee linear collider offers with as advantages:

    • Far less Beamstrahlung (negligible)

    • Far better calibration (E5 keV, energy spread & polarization)

    • Much larger couplings to Higgs bosons (/ee4104)

  •  Higgs lineshape!


Linear e e collider cartoons
Linear ee collider: cartoons

SLAC

Japan

DESY


Linear e e collider real work
Linear ee collider: real work


Lepton colliders e e
Lepton colliders: ee

  • SLC

  • TESLA

  • NLC/JLC

  • CLIC

  • s (TeV)

  • 0.1

  • 0.1-0.8

  • 0.5-1.0

  • 0.5-5.0

  • Length (km)

  • 5

  • 33

  • 25

  • 30-40

  • Gradient (MV/m)

  • (10?)

  • 25-35

  • 50

  • 150-170

  • Lumi (1034 cm-2s-1)

  • 0.0003

  • 3-5

  • 2-3

  • 10

  • xy(nm2)

  • 10001000

  • 5005

  • 2002.5

  • 401

  • Beamstrahlung (%)

  • ?

  • 3-4

  • 5-10

  • 30-40

  • ee

    • Higgs

    • Supersymmetry

    • lots more (QCD, …)

  • X-ray FEL option:

    • biology

    • material

  • e and  options


Making choices
Making choices!

  • $$$$$$$$$$$$$$$$$$$$$$

  • HEP creativity exceeds available finances  must be selective

  • allow orginal, excellent, new, ... proposals  be flexible

  • limit (expensive) duplications  operate globally

  • sufficient R&D before technology decision  be economical

  • realistic time schedules!

  • accelerator  non-accelerator

  • links to astro-physics, cosmology and nuclear physics

  • “plan” for the unexpected

  • fill “no-physics” between large accelerator projects

  • Fairly well covered already

  • B-physics: HeraB/Tevatron - BaBar/Belle - LHCb

  • Heavy-ion physics: RHIC - ALICE


Ecfa recommendations
ECFA recommendations

HEPAP addition

Importance of non-accelerator based experiments

  • Make the LHC a success i.e. get it running timely!

  • Exploit ongoing facilities optimally in pre-LHC era

  • Stimulate accelerator R&D @ home institutes

  • Next project: a sub-TeV (s  400 GeV) ee linear collider

  • (irrespective of the findings of the LHC i.e. justification exists today)

  • Coordinated R&D effort to study -storage ring

  • (SPL  intense -beam)

  • VLHC, CLIC & -collider: far future i.e. beyond 2020

  • (coordinate R&D efforts)


Linear e e colliders
Linear ee colliders

  • c.m. energy s:

    • facts:

      • “Giga Z”: smZ90 GeV

      • “top factory”: s2mt350 GeV

    • speculation:

      • “SM Higgs factory”: smH+mZ350 GeV

      • new physics: super-symmetry, extra dimensions, …..

 s  400 GeV

  • pp  ee colliders:

    • complementary (SppS  LEP  Tevatron)

      • Z, W discovery  Z factory

      • mt prediction  top discovery

      • mH prediction  Higgs discovery?

    • pp: discovery physics ( Nobel exp.)

    • ee: precision physics ( Nobel th.)


E e linear collider physics
ee linear collider: physics

  • Precision Higgs study (mH, spin, H, HHH,Hff, …)

  • Super-symmetry spectroscopy (threshold scans)

  • Precision measurements thereby probing higher energies

  • Anything new and unexpected (unlikely to escape LHC though)


E e linear collider higgs
ee linear collider: Higgs

ZHqqbb

ZHl+l-bb

Higgs

decay width

HZ

(fb)

HHZ

(fb)

Higgs

spin

Higgs

selfcoupling

e+e-  HZ

e+e-  HHZ

mH

s

Higgs signals


Prospects limit duplications btev
Prospects (limit duplications: BTeV, … !)

NIKHEF

  • Resolve CERN/LHC situation

    • management & finances

    • realise machine & experiments

    • do the experiments:

      • find Higgs, supersymmetry, quark-gluon plasma, CKM & CP

  • Get the e+e- linear collider on track

    • sort out technology (cold  warm)

    • agree upon one site (FermiLab?) & get it funded!

    • do the experiment(s):  2013

      • better insight into …. (Higgs, supersymmetry, higher energy scales)

?

  • Develop -superbeam/factory facility

    • SPL: intense p source

    • -cooling R&D

    • ?

?

  • Exciting non-accelerator program

    • proton decay, neutrino, satellite-based & gravitational wave experiments


ad