future in particle physics
Download
Skip this Video
Download Presentation
Future in Particle Physics!

Loading in 2 Seconds...

play fullscreen
1 / 19

Future in Particle Physics! - PowerPoint PPT Presentation


  • 120 Views
  • Uploaded on

Future in Particle Physics!. ECFA: Future of Accelerator-Based Particle Physics in Europe HEPAP: Long Range Planning for U.S. High-Energy Physics ACFA: coming up soon?. F. Linde, 14-December-2001, Amsterdam. Input to ECFA report. Laboratories: L. Maiani: “CERN: views for the future”

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Future in Particle Physics!' - kelsey-hurley


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
future in particle physics
Future in Particle Physics!

ECFA:

Future of Accelerator-Based Particle Physics in Europe

HEPAP:

Long Range Planning for U.S. High-Energy Physics

ACFA:

coming up soon?

F. Linde, 14-December-2001, Amsterdam

input to ecfa report
Input to ECFA report
  • Laboratories:
  • L. Maiani: “CERN: views for the future”
  • A. Wagner: “Views on the future of DESY”
  • J. Bagger: “HEPAP sub-panel on long range planning for U.S. High energy physics”
  • F. Gilman: “The U.S. high energy physics advisory panel white paper”
  • A. Skrinsky: “Russian HEP activity: status and perspectives”
  • S. Komamiya: “Report on ACFA activities”
  • Projects:
  • F. Gianotti: “Physics perspectives with the LHC within Standard Model”
  • P. Sphicas: “Physics perspectives with the LHC: SuSy and other physics beyond SM”
  • K. Hubner: “New acceleration methods and plans for high intensity proton machines”
  • R. Klanner: “Future perspectives for ep physics”
  • D. Miller: “Physics potential and concrete perspectives for <1 TeV linear colliders”
  • P. Zerwas: “Muti-TeV lepton colliders: the physics potential”
  • J.P. Delahaye: “CLIC, a two beam multi-TeV e linear collider”
  • A. de Roeck: “CLIC, a compact linear collider: experimentation and physics potential”
  • M. Tigner: “Perspectives and experimental environment of a muon collider”
  • P. Janot: “What physics at muon colliders”
  • K. Peach: “Neutrino factories”
physics challenges
Physics challenges
  • “recent” discoveries:
    • three families (LEP)
    • t-quark discovered (Tevatron)
    • indirect Higgs mass (LEP/Tevatron)
    • -oscillations (Kamiokande)
    • CP violation in B system (BaBar/Belle)
  • many questions, e.g.:
  • matter  anti-matter?
  • dark matter?
  • three families?
  • generation of mass?
  • proton decay?
  • charge quantization?
  • unification?
progress within the standard model
Progress within the Standard Model
  • Improvements:
  • masses: mW, mt, …
  • couplings: s, G, …
  • other: sin2w, CKM, g-2, ...
  • Outstanding issues:
  • Higgs mechanism
  • quark-gluon plasma
  • CP violation quark sector
  • neutrino sector
progress beyond the standard model
Progress beyond the Standard Model
  • Approaches:
  • Rare/forbidden decays
  • New particles
  • New interactions
  • Unification
  • Unknown: look into the sky!
future g projects
Future “G$” projects
  • Hadron-hadron (CERN & Fermilab)
    • LHC upgrades:
      • Luminosity upgrade 1034 1035 cm-2s-1 “easy” (you want it?)
      • Energy upgrade difficult (we might want it!)
    • Very large hadron colliders: VLHC
  • Lepton-lepton (CERN, DESY, US, Japan)
    • ee linear colliders: TESLA, NLC, JLC, CLIC
    •  collider
  • Intense neutrino beams (CERN, FermiLab, Japan)
    • ,,e,e
very large hadron collider
Very large hadron collider
  • VLHC-1
  • VLHC-2
  • s (TeV)
  • 30-40
  • 175
  • B-field (T)
  • 2
  • 10-12
  • Lumi (cm-2s-1)
  • 1034
  • 1035
  • Fermilab
  • VLHC phased project
  • (240 km circumference tunnel)
  • Issue: cost, cost and cost

dipole magnets interesting

(transmission line)

  • Physics
  • The unknown, new, exciting!
  • Continuation of LHC
  • But also clear you only embark on this well after the LHC has cleared the TeV energy range
intense neutrino beams collider
Intense neutrino beams ( collider?)
  • SPL: Ep 2-15 GeV, 1016 p/s
  • target: p  
  • -decay:   
  • -cooling: reduce E, E50 GeV
  • -decay:  decay in “ring”
  • -collider: future music

pee

ee

Japan, CERN & FermiLab

  • Physics
  • “Near” (<1 km, high rate)
    • structure functions
    • CKM matrix
    • new physics
  • “Far” (102-104 km, low rate)
    • oscillations
    • CP

neutrino

beam

neutrino

beam

collider
 collider
  • Everything ee linear collider offers with as advantages:
    • Far less Beamstrahlung (negligible)
    • Far better calibration (E5 keV, energy spread & polarization)
    • Much larger couplings to Higgs bosons (/ee4104)
  •  Higgs lineshape!
lepton colliders e e
Lepton colliders: ee
  • SLC
  • TESLA
  • NLC/JLC
  • CLIC
  • s (TeV)
  • 0.1
  • 0.1-0.8
  • 0.5-1.0
  • 0.5-5.0
  • Length (km)
  • 5
  • 33
  • 25
  • 30-40
  • Gradient (MV/m)
  • (10?)
  • 25-35
  • 50
  • 150-170
  • Lumi (1034 cm-2s-1)
  • 0.0003
  • 3-5
  • 2-3
  • 10
  • xy(nm2)
  • 10001000
  • 5005
  • 2002.5
  • 401
  • Beamstrahlung (%)
  • ?
  • 3-4
  • 5-10
  • 30-40
  • ee
    • Higgs
    • Supersymmetry
    • lots more (QCD, …)
  • X-ray FEL option:
    • biology
    • material
  • e and  options
making choices
Making choices!
  • $$$$$$$$$$$$$$$$$$$$$$
  • HEP creativity exceeds available finances  must be selective
  • allow orginal, excellent, new, ... proposals  be flexible
  • limit (expensive) duplications  operate globally
  • sufficient R&D before technology decision  be economical
  • realistic time schedules!
  • accelerator  non-accelerator
  • links to astro-physics, cosmology and nuclear physics
  • “plan” for the unexpected
  • fill “no-physics” between large accelerator projects
  • Fairly well covered already
  • B-physics: HeraB/Tevatron - BaBar/Belle - LHCb
  • Heavy-ion physics: RHIC - ALICE
ecfa recommendations
ECFA recommendations

HEPAP addition

Importance of non-accelerator based experiments

  • Make the LHC a success i.e. get it running timely!
  • Exploit ongoing facilities optimally in pre-LHC era
  • Stimulate accelerator R&D @ home institutes
  • Next project: a sub-TeV (s  400 GeV) ee linear collider
  • (irrespective of the findings of the LHC i.e. justification exists today)
  • Coordinated R&D effort to study -storage ring
  • (SPL  intense -beam)
  • VLHC, CLIC & -collider: far future i.e. beyond 2020
  • (coordinate R&D efforts)
linear e e colliders
Linear ee colliders
  • c.m. energy s:
    • facts:
      • “Giga Z”: smZ90 GeV
      • “top factory”: s2mt350 GeV
    • speculation:
      • “SM Higgs factory”: smH+mZ350 GeV
      • new physics: super-symmetry, extra dimensions, …..

 s  400 GeV

  • pp  ee colliders:
    • complementary (SppS  LEP  Tevatron)
      • Z, W discovery  Z factory
      • mt prediction  top discovery
      • mH prediction  Higgs discovery?
    • pp: discovery physics ( Nobel exp.)
    • ee: precision physics ( Nobel th.)
e e linear collider physics
ee linear collider: physics
  • Precision Higgs study (mH, spin, H, HHH,Hff, …)
  • Super-symmetry spectroscopy (threshold scans)
  • Precision measurements thereby probing higher energies
  • Anything new and unexpected (unlikely to escape LHC though)
e e linear collider higgs
ee linear collider: Higgs

ZHqqbb

ZHl+l-bb

Higgs

decay width

HZ

(fb)

HHZ

(fb)

Higgs

spin

Higgs

selfcoupling

e+e-  HZ

e+e-  HHZ

mH

s

Higgs signals

prospects limit duplications btev
Prospects (limit duplications: BTeV, … !)

NIKHEF

  • Resolve CERN/LHC situation
    • management & finances
    • realise machine & experiments
    • do the experiments:
      • find Higgs, supersymmetry, quark-gluon plasma, CKM & CP
  • Get the e+e- linear collider on track
    • sort out technology (cold  warm)
    • agree upon one site (FermiLab?) & get it funded!
    • do the experiment(s):  2013
      • better insight into …. (Higgs, supersymmetry, higher energy scales)

?

  • Develop -superbeam/factory facility
    • SPL: intense p source
    • -cooling R&D
    • ?

?

  • Exciting non-accelerator program
    • proton decay, neutrino, satellite-based & gravitational wave experiments
ad