Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator
This presentation is the property of its rightful owner.
Sponsored Links
1 / 33

Materials Characterization at the 3 MV Tandetron Accelerator and at the 9 MV Tandem Accelerator PowerPoint PPT Presentation


  • 96 Views
  • Uploaded on
  • Presentation posted in: General

Materials Characterization at the 3 MV Tandetron Accelerator and at the 9 MV Tandem Accelerator. ERDA, RBS, NRBS RBS/C F. Negoita, P. Ionescu, N. Scintee, G. Velisa, H. Petrascu, Cristina Roxana Nita, D. Pantelica. (1). (2) For M 2 << M 1. excellent elemental resolution.

Download Presentation

Materials Characterization at the 3 MV Tandetron Accelerator and at the 9 MV Tandem Accelerator

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

Materials Characterization at the 3 MV Tandetron Accelerator and at the 9 MV Tandem Accelerator


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

ERDA, RBS, NRBSRBS/CF. Negoita, P. Ionescu, N. Scintee, G. Velisa, H. Petrascu, Cristina Roxana Nita, D. Pantelica


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

(1)

(2)

For M2 << M1

excellent elemental resolution


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

(1)

(2)

For M2 << M1

excellent elemental resolution


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

(1)

(2)

For M2 << M1

excellent elemental resolution


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

(1)

(2)

For M2 << M1

excellent elemental resolution


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

(1)

(2)

For M2 << M1

excellent elemental resolution


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

(1)

(2)

For M2 << M1

excellent elemental resolution


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

(1)

(2)

For M2 << M1

  • a) b)

  • Fig 3. RBS spectra of the specimen 1, measured with: a)a 4He beam (E = 3.065 MeV); b) a 10B beam (E = 8 MeV)

excellent elemental resolution


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

In Fig. 3a a NRA spectrum of the specimen 1, measured with a 4He beam

(E = 3.065 MeV) is presented.

An enhanced O peak at channel 160 is due to the oxygen contained in the PZT film. The result of a simulation using the RUMP code is presented with continuous line. The simulated and experimental curves show good agreement.

The compositions and thicknesses of layers found in specimen 1 are the following:

- PZT layer (composition: Pb0.78Zr0.25Ti0.50O3; thickness: 1340 at/cm2)

- interfacial layer 1 (composition: Ti0.02O0.1Pt0.5; thickness: 870 at/cm2)

- interfacial layer 2 (composition: TiO2; thickness: 45 at/cm2)

- interfacial layer 3 (composition: SiO2; thickness: 3850 at/cm2)

(1)

(2)

For M2 << M1

excellent elemental resolution


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

  • Activitatea de caracterizare a straturilor subtiri utilizind metode IBA s-a concretizat atit in participari la proiecte PNCDI cat si in participari la colaborari internationale:

  • Contract CERES 88 “Cercetari interdisciplinare folosind fascicule de particule

  • accelerate”

  • Responsabil proiect: Dr. Dan Pantelica;

  • Colaborare cu INCDFM, subcontract CERES 10/2001 “Caracterizarea microstructurala

  • avansata si prepararea unor straturi feroelectrice PZT cu orientari cristalografice

  • selectate”

  • Responsabil proiect din partea IFIN-HH: Dr Dan Pantelica;

  • Colaborare cu INCDFM, subcontract CERES 8/2001 “Structuri cuantice

  • semiconductoare”

  • Responsabil proiect din partea IFIN-HH: Dr.Dan Pantelica;

  • Colaborare cu INCDFM, subcontract CERES 15/2001 “Efecte cuantice de interfata in

  • nanostructuri metal/C60”

  • Responsabil proiect din partea IFIN-HH: Dr. Dan Pantelica;

  • Colaborarea 02-32 cu CSNSM-Orsay (Franta) “Characterization of nuclear ceramics

  • using Ion Beam Analysis Techniques”;

  • WP8 „Characterization of surface layers of materials using RBS and ERDA techniques”

  • in cadrul Centrului de Excelenta IDRANAP al EU (FP5).

(1)

(2)

For M2 << M1

excellent elemental resolution


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

  • Lucrari recente, contributii la conferinte:

  • M.Balaceanu, E.Grigore, F.Truica-Marasescu, D.Pantelica, F.Negoita, G.Pavelescu,

  • F.Ionescu,

  • Deposition of amorphous hydrogenated carbon nitride films by hollow cathodedischarge

  • process,

  • Romanian Reports in Physics, Vol.51, Nos.7-8-9-10, P. 781–788, 1999.

  • 2. M.Balaceanu,E.Grigore, F.Truica-Marasescu, D.Pantelica, F.Negoita, G.Pavelescu,

  • F.Ionescu,

  • Characterization of carbon nitride films deposited by hollow cathode dischargeprocess.

  • Prezentata la IBA–14 International Conference on Ion Beam Analysis, 26–30 Iulie 1999

  • Dresden, Germany.

  • Nucl. Instrum. and Meth. in PhysicsResearch B161–163 (2000) 1002–1006.

  • 3. A. Crunteanu, M.Charbonnier, M.Romand, F.Vasiliu, D.Pantelica, F.Negoita,

  • R..Alexandrescu,

  • Synthesis and characterization of carbon nitride thin films obtained by laser

  • induced chemical vapor deposition.

  • Prezentata la E-MRS (European-Materials Research Society) 1999 Spring Meeting

  • Strasbourg, France, June 1-4, 1999.

  • Surface and Coating Technology 125 (2000) 301–307.

  • 4. A. Crunteanu,M.Charbonnier,M.Romand,J.Mugnier,R.Alexandrescu,F.Negoita,

  • D.Pantelica,

  • Structural and vibrational characterization of hydrogenated carbonnitride thin films obtained

  • by laser–induced CVD.

  • Prezentata la E-MRS (European-Materials Research Society) 2000 Conference,Strasbourg,

  • France, May 31-June 2, 2000

  • Applied Surface Science 6422 (2000) 1– 4.

(1)

(2)

For M2 << M1

excellent elemental resolution


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

5. R.V.Ghita, D.Pantelica, F.Negoita, S.Lazanu

Characterization of anodic oxide for GaAs based laser diodes,

Prezentata la ROMOPTO 2000: Sixth Conference on Optics, Bucharest, Romania,

September 4-7, 2000

Proceedings of SPIE 4430,736 (2001).

6. A.Goldemblum, V.Teodorescu, F.Wagner, R.Manaila, G.Filoti, J.Deville,

D.Pantelica, F.Negoita, A.Belu-Marian, N.Scintee,

Structural properties of sputtered ZnO: Au films,

Philosophical Magazine A82,193(2002).

7. M.F.Lazarescu, D.Pantelica, A.S.Manea, R.V.Ghita, F.Negoita

Investigation of semi-insulating oxygen-doped GaAs,

Prezentata la Thirteenth International Conference on Crystal Growth (ICCG-13) in

conjunction with The Eleventh International Conference on Vapor Growth and Epitaxy

(ICVGE-11), Doshisha University, Kyoto, Japan, 30 July-4 August, 2001

Journal of Crystal Growth 240,401 (2002).

8. E.A.Preoteasa, C.Ciortea, B.Constantinescu, D.Fluerasu, S.-E.Enescu,

D.Pantelica, F.Negoita, E.Preoteasa

Analysis of composites for restorative dentistry by PIXE, XRF and ERDA,

Prezentata la The Ninth International Conference on Particle-Induced X-ray Emission

(PIXE) and its Analytical Applications, Guelph, Canada, June 8-12, 2001

Nuclear Instruments and Methods in Physics Research B 189,426(2002).

9. L.E.Dinca, L.Gheorghe, A.Lupei, D.Pantelica, N.Scintee

Growth, RBS-ERDA characterization and modelling in Nd3+-doped calcium-lithium-niobium-

gallium garnett (CLNGG:Nd) crystal,

Nuclear Instruments and Methods in Physics Research A 486, 93 (2002).

(1)

(2)

For M2 << M1

excellent elemental resolution


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

10. M.Balaceanu, M.Braic, D.Macovei, M.J.Genet, A.Manea, D.Pantelica, V.Braic,

F.Negoita

Properties of titanium based hard coatings deposited by cathodic arc method

Journal of Optoelectronics and Advanced Materials, 4,107 (2002).

11. D.Pantelica, L.Thomé, S.E.Enescu, F.Negoita, P.Ionescu, I.Stefan, A.Gentils

Ion beam characterization of He implanted into nuclear matrices

Prezentata la IBA 16, Albuquerque, New Mexico, USA, June 29-July 4, 2003

Nucl. Instr. and Meth., B219-220, 373 (2004).

12. D.Pantelica, F.Vasiliu, P.Ionescu, F.Negoita

RBS, ERDA, TEM and SAED characterisation of sol-gel PZT films

Prezentata la ECAART8 Conference 20-24 September2004, Paris, France

Acceptata spre publicare in Nucl. Instr. and Methods in Phys. Res.B.

13. D.Pantelica, P.Ionescu, F.Negoita, N.Scintee, L.Thome, S.Enescu, J.Jagielski

Complementary use of ERDA and RBS/C for the determination of implanted atom and

damage distribution in spinel.

Prezentata la ECAART8 Conference 20-24 September 2004, Paris, France

Acceptata spre publicare in Nucl. Instr. and Methods in Phys. Res. B.

14. D. Pantelica, M. Petrascu, F. Negoita, N. Scintee, H. Petrascu, A. Isbasescu, I. Stefan,

P. Ionescu

Characterization of CNx and CNx:H thin layers using ERDA with heavy ions

Proceedings of the International Conference on Applications of High Precision Atomic

and Nuclear Methods, Neptun, Romania, 2-6 September 2002.

15. E. A. Preoteasa, C. Ciortea, D. Fluerasu, D. Pantelica, F. Negoita, L. Haragus, A. Iordan,

E. Preoteasa, M. Moldovan

PIXE and ERDA analysis of composites for restorative dentistry

Proceedings of the International Conference on Applications of High Precision Atomic

and Nuclear Methods, Neptun, Romania, 2-6 September 2002.

(1)

(2)

For M2 << M1

excellent elemental resolution


Energy calibration comparison method

Energy calibration. Comparison method.

Au

C

4He+ +

Si

1670

D


Simulation of the experimental spectrum previous measurements january 2010

Simulation of the experimental spectrum (previous measurements: January 2010)


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

The calibration constant obtained from previous measurements

July 1975-May 1976; December 1999(*)

January 2010; March 2011

January 2010 and March 2011

K=27.742 ± 0.004 keV·amu/e2·MHz2

* K=27.720 ± 0.003 keV·amu/e2·MHz2


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

Growth and characterisation of SrCuO2 thin films

C. N. Mihailescu1,3

D. Pantelica4, H.Petrascu4, P. Ionescu4, Cristina Roxana Nita4

I. Athanasopoulos1, R. Saint-Martin2, A. Revcolevschi2, J. Giapintzakis1

1 Department of Mechanical and Manufacturing Engineering, University of Cyprus,

75 Kallipoleos Av., PO Box 20537, 1678 Nicosia, Cyprus

2 LPCES - ICMMO - Bât 410, Université Paris-Sud XI, 15 Georges Clémenceau St.,

91405 Orsay Cedex, France

3 National Institute for Lasers, Plasma and Radiation Physics, Lasers Department

4 Horia Hulubei National Institute for Research and Development in

Physics and Nuclear Engineering


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

Transition metal oxides (TMOs) exhibit a rich variety of novel properties, which can be exploited for a wide range of applications including ultra-high-density magnetic data storage, spintronics, quantum computing and more recently thermal management applications. Thin films of TMOs offer enormous opportunities to explore intriguing physics and also practical applications. The discovery of high Tc superconductivity in cuprates has increased in recent years the interest for low-dimensional Heisenberg magnetic systems.

Among these, the compound SrCuO2 (SCO) has drawn much attention. SCO in the orthorhombic structure, consisting of zigzag chains of Cu2+ ions, has been recently shown to exhibit sizeable magnetic heat transport; while SCO in the tetragonal structure exhibits the simplest structure with superconducting CuO2 planes (so called infinite layer compound).

Depending on the phase and the orientation, SCO can then be used for different applications. While it has been possible to obtain bulk SCO only in the orthorhombic structure, in the thin film form this compound has only been stabilized in the tetragonal structure.


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

Tetragonal Structure

SrCuO2 (SCO) thin films were grown on

(100) SrTiO3 and (100) MgO substrates.

SrTiO3 substrates were treated with BHF etching to obtain a clean surface with TiO2

termination layer.

Orthorhombic Structure


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

Letter of Intent

for

Using the 3 MV and 9MV Tandems

April 14, 2012

It is proposed to study the elemental composition depth profile, thickness and lattice defects in

thin films of novel materials by ion beam techniques such as Rutherford Backscattering

Spectroscopy (RBS), Elastic Recoil Detection Analysis (ERDA), Nuclear Reaction Analysis

(NRA) and Proton Induced X-ray Emission (PIXE), taking advantage of both the existing 9MV

Tandem and the new 3MV Tandem facilities present at the Horia Hulubei National Institute of

Physics and Nuclear Engineering. The materials include mainly oxides such as LiCoO2, SrCuO2,

La5Ca9Cu24O41, VO2 etc.

Ioannis Giapintzakis, Professor

Director of Nanotechnology Research Unit

Department of Mechanical & Manufacturing Engineering

School of Engineering

University of Cyprus

75 Kallipoleos Av., PO Box 20537

1678 Nicosia, Cyprus

E-mail: [email protected]

Tel.: +357 22892283

Fax: +357 22895381


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

  • Letters of Intent INCDFM-Tandem Accelerators

  • Corneliu Ghica (lab. 50)

  • Comparison between quantitative analysis results obtained by analytical techniques in our laboratory (e.g. EDS, EELS) and complementary Ion Beam Analysis techniques:

  • -thin films (mono- or multilayers) and nanopowders with low doping (<1%) or containing low atomic number Z (Z<11) elements;

  • - concentration profiles in the case of thin films.

  • Sergiu Nistor ( lab. 50)

  • Ion beam analysis on:

  • ultrapure Si single crystal (FZ-floating zone) (platelets 20 x 20 x 0.3 mm3 - orientation <100>) implanted with ions 13C and 17O;

  • - cubic boron nitride single crystals (0.4 x 0.4 x 0.2 mm3) for detection of the presence and concentration of natural impurities (Ca, Ba, Si, C) by microPIXE si PIGE techniques.

  • Ion implantation of transition group elements (iron and rare earths) in single crystals and thin films pf boron nitride (cubic and/or hexagonal).


Materials characterization at the 3 mv tandetron accelerator and at the 9 mv tandem accelerator

Letters of Intent INCDFM-Tandem Accelerators

Ovidiu Crisan, (lab. 20) Florin Vasiliu

Ion beam analysis for estimation of nitrogen and boron content in melt spun ribbons

(system FePtNbB).

Cristian M. Teodorescu (lab. 50)

Ion beam analysis of metals deposited on semiconductor wafers at high temperature.

Metal: Mn, Fe, Co, Co, Cu, Sm, Gd.

Semiconductor: Si(001), Si(111), Ge(001), Ge(111), GaAs(001), rutile TiO2(011).

Quantity deposited: 2-200 nm of equivalent bulk metal. Expected concentrations: 5-50 %.

Aim of the study: identification of interface alloys with ferromagnetic properties.

Complementary method for composition and concentration profile validation: XPS/AES with depth profiling.

Other studies: electron diffraction (LEED, RHEED), angle-resolved ultraviolet photoelectron spectroscopy (ARUPS), yielding experimental band structure, spin-resolved UPS, MOKE, SQUID (collaboration with Lab. 20), STM, HRTEM (collaboration with Lab. 50).


  • Login