Soal No 17 halaman 66

1 / 35

# Soal No 17 halaman 66 - PowerPoint PPT Presentation

Soal No 17 halaman 66. Find a) the coordinates of the foci and vertices for hyperbola whose equations given, b) equation of the asymptotes. Sketch the curve. Penyelesaian :. Jelas Titik puncak adalah P( a,0) dan Q(-a,0) Jadi titik puncaknya adalah P(8,0) dan Q(-8,0). Jelas

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about ' Soal No 17 halaman 66' - keaira

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Soal No 17 halaman 66

Find a) the coordinates of the foci and vertices for hyperbola whose equations given, b) equation of the asymptotes.

Sketch the curve.

Penyelesaian:

Jelas

Jelas

Foci diperolehdari (c,0) dan (-c,0).

Nomor 21 Halaman 66

Sketch the two equation of each system on the same set of axes and specify the number of real number of the system.

Penyelesaian

Jelaspersamaan (1) adalahpersamaanlingkarankarena A=B denganpanjangjari-jari 3.

JelasPersamaan (2) :

Titikpuncak P(a,0) dan Q(-a,0).

Jelas foci diperolehdari (c,0) dan (-c,0) sehingga

Exercise 2.4 number 27

Find a standard equation of the hyperbola that has the foci of ellips 9x + 4y = 36 for vertices and the vertices of the ellips for foci.

Persamaan elips 9x + 4y = 36

Persamaan tersebut dapat dibentuk menjadi persamaan baku dari ellips dengan kedua ruas dikalikan , diperoleh:

Ingat : Ada 2 bentuk persamaan ellipsatau

Jelas

sehinggapersamaanberbentuk

Dari persaman tersebut diperoleh

dan

Untuk mencari fokus dapat dapat diperoleh dengan mensubstitusikan nilai a = 3 dan b = 2 dalam persamaan maka diperoleh:

Karena titik puncak elips merupakan titik fokus hiperbola dan titik fokus elips merupakan titik puncak hiperbola maka titik fokus hiperbola adalah dan

Mencaripersamanhiperbola

Substitusikan dan ke persamaan

, maka diperoleh

Soal No 28 Halaman 66

Find the length of the perpendicular segment from a focus of the hyperbola to one of the asymptotes.

From the equations, we get the foci of hyperbola are M(0,c) and N(0,-c)

So one of the focus is P

The asymptote of the equation is

So the coordinate of the asymptote (b,a)

The length of the perpendicular segment from a focus of hyperbola and one of the asymptote is

Nomor 19 Halaman 70

Name and sketch the graph of each equation

Solution :

Because of A and C same sign, B=0 so the name of graph from the equation is two parallel lines.

Soal No 22 Halaman 70

Graph the set of points contained in the graphs of

• Both and
• Either or
Penyelesaian

Jika x= 0 maka y= -6

x=1 maka y= -5

x=-1 maka y= -5

x=2 maka y= -2

x=-2 maka y=-2

Nomor 24 Halaman 70

Graph each pair of conjugate hyperbola

Solution

Persamaan 1

Jelas

Jelas

Persamaan 2

Jelas

Jelas

Hal 70 no.25

Show that the foci of the conjugate hyperbolas

and lie on circle.

Solution

A hyperbola has the standard equation

From , we get

Foci of are A(0,c) and B(0,-c)

From , we also get

Foci of is M(0,c) and N(0,-c)

So for both hyperbolas and

And A=B, hence all foci are equidistant from a common point (the origin) and therefore lie on a circle

Hal 66 no.29

By solving for y, obtain the equation

and argue that the graph

of the equation approaches the stright line graphs of as increases.

Solution

As grows larger and larger,

approaches

0 and

Approaches 1, from which y approaches

Jelas

Hal 66 no.30

By solving for x, obtain the equation

and argue that the graph

of the equation approaches the stright line graphs of as increases.

Solution

As grows larger and larger,

approaches

0 and

Approaches 1, from which x approaches

Jelas