1 / 42

EE365 Adv. Digital Circuit Design Clarkson University Lecture #8

EE365 Adv. Digital Circuit Design Clarkson University Lecture #8 Buffers, Drivers, Encoders, MUXs & XORs. Topics. Buffers Drivers Encoders Multiplexers Exclusive OR Gates. Lect #8. Rissacher EE365. Three-state buffers. Output = LOW, HIGH, or Hi-Z.

kayo
Download Presentation

EE365 Adv. Digital Circuit Design Clarkson University Lecture #8

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EE365 Adv. Digital Circuit Design Clarkson University Lecture #8 Buffers, Drivers, Encoders, MUXs & XORs

  2. Topics • Buffers • Drivers • Encoders • Multiplexers • Exclusive OR Gates Lect #8 Rissacher EE365

  3. Three-state buffers • Output = LOW, HIGH, or Hi-Z. • Can tie multiple outputs together, if at most one at a time is driven. Lect #8 Rissacher EE365

  4. Different flavors Lect #8 Rissacher EE365

  5. Lect #8 Rissacher EE365

  6. Timing considerations Lect #8 Rissacher EE365

  7. Three-state drivers Lect #8 Rissacher EE365

  8. Driver application Lect #8 Rissacher EE365

  9. Three-state transceiver Lect #8 Rissacher EE365

  10. Transceiver application Lect #8 Rissacher EE365

  11. Decoder Encoder Encoders vs. Decoders Lect #8 Rissacher EE365

  12. Binary encoders Lect #8 Rissacher EE365

  13. Need priority in most applications Lect #8 Rissacher EE365

  14. 8-input priority encoder Lect #8 Rissacher EE365

  15. Priority-encoder logic equations Lect #8 Rissacher EE365

  16. 74x148 8-input priority encoder • Active-low I/O • Enable Input • “Got Something” • Enable Output Lect #8 Rissacher EE365

  17. 74x148circuit Lect #8 Rissacher EE365

  18. 74x148 Truth Table Lect #8 Rissacher EE365

  19. In Class Practice Problem Write the truth table for a 4-to-2 encoder: • No enables • Active High inputs and outputs Lect #8 Rissacher EE365

  20. In Class Practice Problem Lect #8 Rissacher EE365

  21. Cascading priority encoders • 32-inputpriority encoder Lect #8 Rissacher EE365

  22. Constant expressions Lect #8 Rissacher EE365

  23. Outputs Lect #8 Rissacher EE365

  24. Alternative formulation • WHEN is very natural for priority function Lect #8 Rissacher EE365

  25. Multiplexers Lect #8 Rissacher EE365

  26. 74x1518-input multiplexer Lect #8 Rissacher EE365

  27. 74x151 truth table Lect #8 Rissacher EE365

  28. CMOS transmission gates • 2-input multiplexer Lect #8 Rissacher EE365

  29. Other multiplexer varieties • 2-input, 4-bit-wide • 74x157 • 4-input, 2-bit-wide • 74x153 Lect #8 Rissacher EE365

  30. In Class Practice Problem Write the truth table for a 1-to-4 line Multiplexer: • No enables • Active High inputs and outputs Lect #8 Rissacher EE365

  31. In Class Practice Problem Lect #8 Rissacher EE365

  32. Barrel shifter design example • n data inputs, n data outputs • Control inputs specify number of positions to rotate or shift data inputs • Example: n = 16 • DIN[15:0], DOUT[15:0], S[3:0] (shift amount) • Many possible solutions, all based on multiplexers Lect #8 Rissacher EE365

  33. 16 16-to-1 MUXs 16-to-1 mux = 2 x 74x151 8-to-1 mux + NAND gate Lect #8 Rissacher EE365

  34. 4 16-bit 2-to-1 MUXs 16-bit 2-to-1 mux = 4 x 74x157 4-bit 2-to-1 mux Lect #8 Rissacher EE365

  35. Properties of different approaches Lect #8 Rissacher EE365

  36. 2-input XOR gates • Like an OR gate, but excludes the case where both inputs are 1. • XNOR: complement of XOR Lect #8 Rissacher EE365

  37. XOR and XNOR symbols Lect #8 Rissacher EE365

  38. Gate-level XOR circuits • No direct realization with just a few transistors. Lect #8 Rissacher EE365

  39. CMOS XOR with transmission gates IF B==1 THEN Z = !A; ELSE Z = A; Lect #8 Rissacher EE365

  40. Multi-input XOR • Sum modulo 2 • Parity computation • Used to generate and check parity bits in computer systems. • Detects any single-bit error Lect #8 Rissacher EE365

  41. Parity tree • Faster with balanced tree structure Lect #8 Rissacher EE365

  42. Next time • Comparators • Adders • Multipliers • Read-only memories (ROMs) Lect #8 Rissacher EE365

More Related