Loading in 5 sec....

Fourier Analysis and its ApplicationsPowerPoint Presentation

Fourier Analysis and its Applications

- 94 Views
- Uploaded on

Download Presentation
## PowerPoint Slideshow about ' Fourier Analysis and its Applications' - kavindra-gaurhari

**An Image/Link below is provided (as is) to download presentation**

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript

From: “Introduction to Fourier Transforms in Image Processing”,The University of Minnesota , http://www.cs.unm.edu/~brayer/vision/fourier.html

From: “Introduction to Fourier Transforms in Image Processing”,The University of Minnesota , http://www.cs.unm.edu/~brayer/vision/fourier.html

From: “Introduction to Fourier Transforms in Image Processing”,The University of Minnesota , http://www.cs.unm.edu/~brayer/vision/fourier.html

From: “Introduction to Fourier Transforms in Image Processing”,The University of Minnesota , http://www.cs.unm.edu/~brayer/vision/fourier.html

Applications

What Is Fourier Series?

A method for solving some differential equations

An approximation for a complex function with an infinite sine and cosine series

A foundation of Fourier Transformation which is used for various analyses such as sounds and images

From: “Elementary Differential Equations and Boundary Value Problems(Ninth Edition)”, William E. Bryce and Richard C. Prima, John Wiley and Sons, Inc. 2009

The General Formula for a Fourier Series

From:”Fourier Series”, University of Hawaii,

http://www.phys.hawaii.edu/~teb/java/ntnujava/sound/Fourier.html

The full rectifier can be approximated with Fourier series.

Full rectifier as the series

From:”Fourier Series”, University of Hawaii,

http://www.phys.hawaii.edu/~teb/java/ntnujava/sound/Fourier.html

One Dimensional Fourier Transformation

- An example function:
- The test function has four different frequencies and these generate several periods as a wave function.

Fourier Transform

Graph with six cosine functions

One of the most popular uses of the Fourier Transform is in image processing.

Fourier Transforms represents each image as an infinite series of sines and cosines.

Images consisting of only cosines are the simplest

2D Fourier Transformation (Image Processing)Cosine Image and its Transform image processing.

The higher frequency colors on each image generate the patters of dots in their Fourier Transform.

From: “Introduction to Fourier Transforms in Image Processing”,The University of Minnesota , http://www.cs.unm.edu/~brayer/vision/fourier.html

For all REAL (not imaginary or complex) images, Fourier Transforms are symmetrical about the origin.

From: “Introduction to Fourier Transforms in Image Processing”,The University of Minnesota , http://www.cs.unm.edu/~brayer/vision/fourier.html

What happens when you rotate the image? Transforms are symmetrical about the origin.

The Fourier Transform creates a much more complex image.

What causes the “+” shaped vertical and horizontal components?

From: “Introduction to Fourier Transforms in Image Processing”,The University of Minnesota , http://www.cs.unm.edu/~brayer/vision/fourier.html

Fourier Transforms are Transforms are symmetrical about the origin.INFINITE series of sines and cosines. The edges of the arrays affect each other.

Putting a frame around the image creates a more accurate Fourier Transform

Transform of original image

Image with the edges covered by a gray frame

Transform of gray framed image

Actual transform of original image framed image

Effect of noise on a Image Fourier Transform

Fourier Transforms of more general images have very little structure From: “Introduction to Fourier Transforms in Image Processing”,The University of Minnesota , http://www.cs.unm.edu/~brayer/vision/fourier.html

The more symmetrical baboon has a more symmetrical Fourier Transform

Data set for a two dimensional map structure

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 100, 100, 100, 100, 0, 0, 0,

0, 0, 0, 100, 100, 100, 100, 0, 0, 0,

0, 0, 0, 100, 100, 100, 100, 0, 0, 0,

0, 0, 0, 100, 100, 100, 100, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Data set for two dimensional map with ‘noise' around the edges

50, 50, 50, 50, 50, 50, 50, 50, 50, 50,

50, 0, 0, 0, 0, 0, 0, 0, 0, 50,

500, 0, 0, 0, 0, 0, 0, 0, 0, 50,

50, 0, 0, 100, 100, 100, 100, 0, 0, 50,

50, 0, 0, 100, 100, 100, 100, 0, 0, 50,

50, 0, 0, 100, 100, 100, 100, 0, 0, 50,

50, 0, 0, 100, 100, 100, 100, 0, 0, 50,

50, 0, 0, 0, 0, 0, 0, 0, 0, 50,

50, 0, 0, 0, 0, 0, 0, 0, 0, 50,

50, 50, 50, 50, 50, 50, 50, 50,50, 50

Data set of a Two Dimensional map with random numbers edges

49, 29, 13, 69, 39, 62, 03, 97, 0, 44,

18, 4,46,66, 41, 39, 44, 57, 27, 59,

26, 30, 98, 74, 88, 89, 84, 1, 98, 46,

0, 40,35, 100, 100, 100, 100, 76, 4, 48,

98, 15, 46, 100, 100, 100, 100, 34, 55, 86,

73, 29, 40, 100, 100, 100, 100, 35, 34, 9,

7, 61, 99, 100, 100, 100, 100, 40, 67, 61,

25, 77, 53, 84, 72, 63, 18, 13, 69, 31,

81, 52, 20, 91, 76, 63, 6, 8, 23, 73,

21, 59, 76, 68, 79, 44, 20, 48, 53, 19

Values used came from the middle two terms of phone numbers from a random page in the telephone directory

Summary Noise

- Fourier series and transformation are used for various scientific and engineering applications, such as heat conduction, wave propagation, potential theory, analyzing mechanical or electrical systems acted on by periodic external forces, and shock wave analysis

Download Presentation

Connecting to Server..