kondo physics from a quantum information perspective
Download
Skip this Video
Download Presentation
Kondo Physics from a Quantum Information Perspective

Loading in 2 Seconds...

play fullscreen
1 / 48

Kondo Physics from a Quantum Information Perspective - PowerPoint PPT Presentation


  • 103 Views
  • Uploaded on

Kondo Physics from a Quantum Information Perspective. Pasquale Sodano International Institute of Physics, Natal, Brazil. Sougato Bose UCL (UK). Henrik Johannesson Gothenburg (Sweden). Abolfazl Bayat UCL (UK). References. An order parameter for impurity systems at quantum criticality

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Kondo Physics from a Quantum Information Perspective' - katy


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
kondo physics from a quantum information perspective

Kondo Physics from a Quantum Information Perspective

Pasquale Sodano

International Institute of Physics, Natal, Brazil

slide2

Sougato Bose

UCL (UK)

Henrik Johannesson

Gothenburg (Sweden)

AbolfazlBayat

UCL (UK)

references
References
  • An order parameter for impurity systems at quantum criticality
  • A. Bayat, H. Johannesson, S. Bose, P. Sodano
  • To appear in Nature Communication.
  • Entanglement probe of two-impurity Kondo physics in a spin chain
  • A. Bayat, S. Bose, P. Sodano, H. Johannesson, Phys. Rev. Lett. 109, 066403 (2012)
  • Entanglement Routers Using Macroscopic Singlets
  • A. Bayat, S. Bose, P. Sodano, Phys. Rev. Lett. 105, 187204 (2010)
  • Negativity as the Entanglement Measure to Probe the Kondo Regime in the
  • Spin-Chain Kondo Model
  • A. Bayat, P. Sodano, S. Bose, Phys. Rev. B 81, 064429 (2010)
  • Kondo Cloud Mediated Long Range Entanglement After Local
  • Quench in a Spin Chain
  • P. Sodano, A. Bayat, S. Bose
  • Phys. Rev. B 81, 100412(R) (2010)
contents of the talk
Contents of the Talk

Negativity as an Entanglement Measure

Single Kondo Impurity Model

Application: Quantum Router

Two Impurity Kondo model: Entanglement

Two Impurity Kondo model: Entanglement Spectrum

entanglement of mixed states
Entanglement of Mixed States

Separable states:

Entangled states:

How to quantify entanglement for a general mixed state?

There is not a unique entanglement measure

negativity
Negativity

Separable:

Valid density matrix

Entangled:

Negativity:

gapped systems
Gapped Systems

Excited states

Ground state

The intrinsic length scale of the system impose an exponential decay

gapless systems
Gapless Systems

Continuum of excited states

Ground state

There is no length scale in the system so correlations decay algebraically

kondo physics
Kondo Physics

Despite the gapless nature of the Kondo system, we have a length scale in the model

realization of kondo effect
Realization of Kondo Effect

Semiconductor quantum dots

D. G. Gordon et al. Nature 391, 156 (1998).

S.M. Cronenwett, Science 281, 540 (1998).

Carbon nanotubes

J. Nygard, et al. Nature 408, 342 (2000).

M. Buitelaar, Phys. Rev. Lett. 88, 156801 (2002).

Individual molecules

J. Park, et al. Nature 417, 722 (2002).

W. Liang, et al, Nature 417, 725–729 (2002).

kondo spin chain
Kondo Spin Chain

E. S. Sorensen et al., J. Stat. Mech., P08003 (2007)

entanglement versus length
Entanglement versus Length

Entanglement decays exponentially with length

scaling
Scaling

B

A

Impurity

L

N-L-1

Kondo Regime:

Dimer Regime:

scaling of the kondo cloud
Scaling of the Kondo Cloud

Kondo Phase:

Dimer Phase:

application quantum router
Application: Quantum Router

Converting useless entanglement into useful

one through quantum quench

extended singlet
Extended Singlet

With tuning J’ we can generate a proper cloud which

extends till the end of the chain

attainable entanglement
Attainable Entanglement

1- Entanglement dynamics is very long lived and oscillatory

2- maximal entanglement attains a constant values for large chains

3- The optimal time which entanglement peaks is linear

distance independence
Distance Independence

For simplicity take a symmetric composite:

non kondo singlets dimer regime
Non-Kondo Singlets (Dimer Regime)

Clouds are absent

K: Kondo (J2=0) D: Dimer (J2=0.42)

entanglement in asymmetric chains
Entanglement in Asymmetric Chains

Symmetric geometry gives the best output

two impurity kondo model1
Two Impurity Kondo Model

RKKY interaction

impurities
Impurities

Entanglement

entanglement of impurities
Entanglement of Impurities

Entanglement can be used as the order parameter

for differentiating phases

scaling at the phase transition
Scaling at the Phase Transition

The critical RKKY coupling scales just as Kondo temperature does

entropy of impurities
Entropy of Impurities

Triplet

Identity

Singlet

order parameter
Order Parameter
  • Order parameter is:
    • 1- Observable
    • 2- Is zero in one phase and non-zero in the other
    • 3- Scales at criticality
  • Landau-Ginzburg paradigm:
    • 4- Order parameter is local
    • 5- Order parameter is associated with a symmetry breaking
entanglement spectrum
Entanglement Spectrum

Entanglement spectrum:

entanglement spectrum1
Entanglement Spectrum

NA=NB=400

J’=0.4

NA=600, NB=200

J’=0.4

schmidt gap
Schmidt Gap

Schmidt gap:

thermodynamic behaviour
Thermodynamic Behaviour

J’=0.4

J’=0.5

In the thermodynamic limit Schmidt gap takes

zero in the RKKY regime

diverging derivative
Diverging Derivative

In the thermodynamic limit the first derivative of

Schmidt gap diverges

summary
Summary

Negativity is enough to determine the Kondo length and the

scaling of the Kondo impurity problems.

By tuning the Kondo cloud one can route distance independent

entanglement between multiple users via a single bond quench.

Negativity also captures the quantum phase transition in two

impurity Kondo model.

Schmidt gap, as an observable, shows scaling with the right

exponents at the critical point of the two Impurity Kondo model.

references1
References
  • An order parameter for impurity systems at quantum criticality
  • A. Bayat, H. Johannesson, S. Bose, P. Sodano
  • To appear in Nature Communication.
  • Entanglement probe of two-impurity Kondo physics in a spin chain
  • A. Bayat, S. Bose, P. Sodano, H. Johannesson, Phys. Rev. Lett. 109, 066403 (2012)
  • Entanglement Routers Using Macroscopic Singlets
  • A. Bayat, S. Bose, P. Sodano, Phys. Rev. Lett. 105, 187204 (2010)
  • Negativity as the Entanglement Measure to Probe the Kondo Regime in the
  • Spin-Chain Kondo Model
  • A. Bayat, P. Sodano, S. Bose, Phys. Rev. B 81, 064429 (2010)
  • Kondo Cloud Mediated Long Range Entanglement After Local
  • Quench in a Spin Chain
  • P. Sodano, A. Bayat, S. Bose
  • Phys. Rev. B 81, 100412(R) (2010)
ad