M rnosti
This presentation is the property of its rightful owner.
Sponsored Links
1 / 22

Úměrnosti PowerPoint PPT Presentation


  • 848 Views
  • Uploaded on
  • Presentation posted in: General

Úměrnosti. Výpočty přímé a nepřímé úměrnosti. Poměr - opakování. Pojem poměr nás provází celým životem a setkáváme se s ním prakticky každodenně. Vzpomeňme jen na pár ukázkách některé případy, v nichž se v běžném životě s poměrem (pojmem poměr, vyjádřením poměru) setkáváme.

Download Presentation

Úměrnosti

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


M rnosti

Úměrnosti

Výpočty přímé a nepřímé úměrnosti.


Pom r opakov n

Poměr - opakování

Pojem poměr nás provází celým životem a setkáváme se s ním prakticky každodenně.

Vzpomeňme jen na pár ukázkách některé případy, v nichž se v běžném životě s poměrem (pojmem poměr, vyjádřením poměru) setkáváme.

Tak například poměr ředění sirupů, postřiků, čisticích prostředků, oleje apod.

Obrázky: vlastní foto

Uveď další příklady užití poměru. Např. z oblasti sportu, …


Pom r opakov n1

Poměr - opakování

Poměr porovnávaných údajů a,b zapisujemea : ba čteme a ku b.

3:2

9:13

1:3

15:13

Číslo b>0 nazýváme druhý člen poměru.

Poměr a : b můžeme zapsat ve tvaru zlomku:

Číslo a>0 nazýváme první člen poměru.


U it pom ru 3 2 zm na v dan m pom ru

Užití poměru 3:2-změna v daném poměru

Čím se oba zápisy liší, kromě úvodní zadané hodnoty, která byla v obou příkladech jiná?

400

1

400

1

V prvním příkladu jsme v daném poměru číslo zvětšovali, násobili jsme zadanou hodnotu poměrem zapsaným do zlomku tak, aby byl větší než jedna, tzn. čitatel byl větší než jmenovatel.

Ve druhém příkladu jsme sice opět násobili zadanou hodnotu poměrem zapsaným do zlomku, ale tentokrát tak, aby byl menší než jedna, tzn. čitatel byl menší než jmenovatel. Výsledkem je pak zmenšení daného čísla v daném poměru.

Z uvedeného pro nás tedy vyplývá závěr, že pokud násobíme dané číslo číslem větším než jedna, dané číslo zvětšujeme, a naopak pokud násobíme dané číslo číslem menším než jedna, pak dané číslo zmenšujeme!


Zv t ov n sla v dan m pom ru

Zvětšování čísla v daném poměru

Zvětšit číslo v daném poměru znamená vynásobit toto číslo zlomkem vytvořeným z daného poměru tak, aby byl větší než jedna. To znamená v čitateli větší část poměru a ve jmenovateli část menší.

Příklad: Zvětšete číslo 24 v poměru 4:3.

8

1

Zvětšit číslo 24

v poměru 4:3 tedy znamená vynásobit číslo 24 zlomkem 4/3,

tj. určit 4/3 z čísla 24.

Je-li daný poměr větší než jedna, nastane při změně v daném poměru zvětšení!


Zmen ov n sla v dan m pom ru

Zmenšování čísla v daném poměru

Zmenšit číslo v daném poměru znamená vynásobit toto číslo zlomkem vytvořeným z daného poměru tak, aby byl menší než jedna. To znamená v čitateli menší část poměru a ve jmenovateli část větší.

Příklad: Zmenšete číslo 24 v poměru 3:4.

6

1

Zmenšit číslo 24

v poměru 3:4 tedy znamená vynásobit číslo 24 zlomkem 3/4,

tj. určit 3/4 z čísla 24.

Je-li daný poměr menší než jedna, nastane při změně v daném poměru zmenšení!


P m m rnost m ra opakov n

Přímá úměrnost (úměra) - opakování

Příklad: Kolik korun bude stát nákup 1, 2, 3, 4, 5, 6, 7, 8 rohlíků, stojí-li jeden rohlík 2,- Kč?

Kolikrát se zvětší (zmenší) jedna veličina, tolikrát se zvětší (zmenší) druhá veličina.

V jakém poměru se zvětší (zmenší) jedna veličina, v takovém poměru se zvětší (zmenší) druhá veličina.

Takový vztah mezi dvěmaveličinami se nazývápřímá úměrnost.

Říkáme, že veličiny jsou přímo úměrné.


P m m rnost m ra opakov n1

Přímá úměrnost (úměra) - opakování

Závěr, který pro nás ze všech našich zjištění vyplývá:

Kolikrát se zvětší (zmenší) jedna veličina, tolikrát se zvětší (zmenší) druhá veličina.

V jakém poměru se zvětší (zmenší) jedna veličina, v takovém poměru se zvětší (zmenší) druhá veličina.

Takový vztah mezi dvěmaveličinami se nazývápřímá úměrnost.

Říkáme, že veličiny jsou přímo úměrné.


V po et p m m rnosti m ry

Výpočet přímé úměrnosti (úměry)

V jakém poměru se zvětší (zmenší) jedna veličina, v takovém poměru se zvětší (zmenší) druhá veličina.

Z uvedeného tedy plyne, že pokud bychom neznali cenu 6 rohlíků, ale znali cenu 2 rohlíků, mohli bychom tuto určit zvětšením dané ceny

v poměru počtu rohlíků.


V po et p m m rnosti m ry1

Výpočet přímé úměrnosti (úměry)

Více rohlíků ...

x

… znamená vyšší cenu ...

V jakém poměru se zvětší (zmenší) jedna veličina, v takovém poměru se zvětší (zmenší) druhá veličina.

… a tak budeme číslo 4 zvětšovat v poměru nárůstu počtu rohlíků.

Zvětšování znamená násobení daného čísla poměrem zapsaným do zlomku tak, aby byl větší než jedna, tzn. čitatel byl větší než jmenovatel.


V po et p m m rnosti m ry2

Výpočet přímé úměrnosti (úměry)

Méně rohlíků ...

x

… znamená menší cenu ...

V jakém poměru se zvětší (zmenší) jedna veličina, v takovém poměru se zvětší (zmenší) druhá veličina.

… a tak budeme číslo 10 zmenšovat

v poměru snížení počtu rohlíků.

Zmenšování znamená násobení daného čísla poměrem zapsaným do zlomku tak, aby byl menší než jedna, tzn. čitatel byl menší než jmenovatel.


Nep m m rnost m ra opakov n

Nepřímá úměrnost (úměra) - opakování

Příklad: Chovatel psů má tři desetikilogramové balíky granulí. Vypočítejte, na jak dlouho mu tato zásoba potravy vydrží pro 1, 2, 3, 5, 6, 10, 15 psů, předpokládáme-li, že jeden pes sežere denně průměrně 1 kg granulí.

Kolikrát se zvětší (zmenší) jedna veličina, tolikrát se zmenší (zvětší) druhá veličina.

V jakém poměru se zvětší (zmenší) jedna veličina, v takovém poměru se zmenší (zvětší) druhá veličina.

Takový vztah mezi dvěmaveličinami se nazývánepřímá úměrnost.

Říkáme, že veličiny jsou nepřímo úměrné.


V po et nep m m rnosti m ry

Výpočet nepřímé úměrnosti (úměry)

Více psů ...

x

… znamená méně dnů, na které zbývá krmivo ...

V jakém poměru se zvětší (zmenší) jedna veličina, v takovém poměru se zmenší (zvětší) druhá veličina.

… a tak budeme číslo 15 zmenšovat

v poměru nárůstu počtu psů.

Zmenšování znamená násobení daného čísla poměrem zapsaným do zlomku tak, aby byl menší než jedna, tzn. čitatel byl menší než jmenovatel.


V po et nep m m rnosti m ry1

Výpočet nepřímé úměrnosti (úměry)

Méně psů ...

x

… znamená více dnů, na které zbývá krmivo ...

V jakém poměru se zvětší (zmenší) jedna veličina, v takovém poměru se zmenší (zvětší) druhá veličina.

… a tak budeme číslo 5 zvětšovat v poměru snížení počtu psů.

Zvětšování znamená násobení daného čísla poměrem zapsaným do zlomku tak, aby byl větší než jedna, tzn. čitatel byl větší než jmenovatel.


Z pis zad n v po tu m rnosti

Zápis zadání výpočtu úměrnosti

Použijeme část našeho příkladu se psy: Šesti psům by vydržela zásoba krmiva na pět dní. Na kolik dní by vydržela psům dvěma?

x

6 psů …………… 5 dní

2 psi ……………. x dní

Stejné veličiny zapisujeme vždy pod sebe. Nejsou-li, převedeme je i na stejné jednotky.


Postup v po tu m rnosti

Postup výpočtu úměrnosti

Použijeme část našeho příkladu se psy: Šesti psům by vydržela zásoba krmiva na pět dní. Na kolik dní by vydržela psům dvěma?

x

6 psů …………… 5 dní

2 psi ……………. x dní

„Sloupeček“

s neznámou zapíšeme ve tvaru ...

… dále následuje znaménko násobení a zvětšení či zmenšení dle druhého sloupečku dané úměrnosti.

V tomto případě logicky zvětšení.


Z v r

Závěr

Základem řešení všech příkladů na úměrnosti je logická úvaha, zda se neznámá hodnota jedné z veličin bude počítat zvětšováním či zmenšováním dané hodnoty této veličiny pomocí poměru daného hodnotami veličiny druhé!


P klady k procvi en

Příklady k procvičení

Která veličina a jak se bude měnit?

Šest strojů vyrobí za směnu 360 součástek. Kolik součástek by za směnu vyrobilo 15 takových strojů?


P klady k procvi en1

Příklady k procvičení

Která veličina a jak se bude měnit?

Šest strojů vyrobí za směnu 360 součástek. Kolik součástek by za směnu vyrobilo 15 takových strojů?

6 strojů ………………. 360 součátek

15 strojů ……………….…. x součátek

Bude se zvětšovat počet součástek, neboť více strojů vyrobí za stejnou dobu více součástek.


P klady k procvi en2

Příklady k procvičení

Která veličina a jak se bude měnit?

Tři stejná čerpadla vyprázdní nádrž za 7,5 hodiny. Za jak dlouho by vyprázdnilo tuto nádrž 5 stejně výkonných čerpadel?


P klady k procvi en3

Příklady k procvičení

Která veličina a jak se bude měnit?

Tři stejná čerpadla vyprázdní nádrž za 7,5 hodiny. Za jak dlouho by vyprázdnilo tuto nádrž 5 stejně výkonných čerpadel?

3 čerpadla ………………. 7,5 hodiny

5 čerpadel …………….….…. x hodin

Bude se zmenšovat počet hodin, neboť více čerpadel vyprázdní stejnou nádrž (vyčerpá stejné množství vody) za kratší dobu.


P klady k procvi en4

Příklady k procvičení

Vymysli a zapiš další příklady přímé či nepřímé úměrnosti a urči u nich, které veličiny a jak se budou měnit?


  • Login