1 / 28

Oscillation Neutrino Physics Reach at Neutrino Factories

Oscillation Neutrino Physics Reach at Neutrino Factories. M. Lindner Technical University Munich. Motivation for Precision. spectrum?. surprise!. how small?. neutrino masses are physics beyond the Standard Model new window to flavour problem – see-saw amplified!

kalkin
Download Presentation

Oscillation Neutrino Physics Reach at Neutrino Factories

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Oscillation Neutrino Physics Reach at Neutrino Factories M. Lindner Technical University Munich

  2. Motivation for Precision spectrum? surprise! how small? • neutrino masses are physics beyond the Standard Model • new window to flavour problem – see-saw amplified! • information complimentary to quarks: Dirac and Majorana CP phases? NuFact04

  3. Guessing the Neutrino Mass Spectrum Quarks and charged leptons: mD ~ Hn ; n = 0,1,2  H > 20 ... 200 Neutrinos: mn ~ Hn  1< H < 10 See-saw: 1<H<10 >20 ? >20 mn = -mDTMR-1mD quarks  hierarchical masses  neutrinos?  large mixings! • inversely correlated hierarchy in MR ? • non-hierarchical, type II see-saw, .... ? NuFact04

  4. The Value of Precision for q13 • models for masses & mixings • input: Known masses & mixings •  distribution of q13 „predictions“ • q13 often close to experimental bounds •  motivates new experiments •  q13 controls 3-flavour effects • like CP-violation for example: sin22q13 < 0.01  • physics question: small q13 • numerical coincidence • systematic (symmetry,...) • how small? • precision! NuFact04

  5. The Interplay of different Topics Standard Model extensions flavour symmetries leptogenesis mechanisms supernovae nucleosynthesis structure formation ... renormalization group mass spectrum, mixings, CP-phases, LVF, 0n2bb-decay, ...  long term: most precise flavour info n-parameters extremely valuable NuFact04

  6. The Future of Oscillations x . NuFact04

  7. Oscillation Channels 2 flavour approximation: Pab = sin2(2q) sin2(Dm2L/4E) Paa = 1 - Pab MSW + parameter mapping NuFact04

  8. Analytical Description • analytic discussion / full numerical simulations • degeneracies, correlations, ...  (sin22q13)eff NuFact04

  9. Long Baseline: Projects and Plans (partly)  precision neutrino physics • running:K2K establish / test atm. osc. with beams • construction:MINOS (2005) ~ 10% for Dm312, q23, improveq13 • CNGS: ICARUS & OPERA (2006) • approval:T2K (JHF-SK) (2008) few% for Dm312, q23,improve q13 • LOIs:NOnA (NuMI-OA) (200x) • H2K (JHF-HK) (201x) % for Dm312, q23,q13, CP, sgn(Dm2) • long term:b-beams, neutrino factory, ... (201x)  precision • .....muon collider.... • every stage is a necessary prerequisit for the next • continuous line of improvements for beams, detectors, physics! . NuFact04

  10. Beams • conventional beams / superbeams • b-beams • neutrino factories • other: laser driven? ...? NuFact04

  11. Determination of the Physics Potential • select a setup (beam, detector, baseline, ...) • take „most realistic“ parameters  best guess! • simulate all relevant aspects as good as possible  GLoBES • determine the potential: „true“  fitted parameters • consider other options, time, cost, improvements, ... • compare only realistic simulations •  discuss the reliability of the input (assumptions) •  think of improvements  R&D in all directions until decisions must be made NuFact04

  12. correlations degeneracies systematics sin22q13 statistical limit (all parameters fixed) limit for (sin22q13)eff limit for sin22q13 from *THIS* experiment only precise knowledge of some parameter combination = precision of the experiment synergies = combine with other experiments  gain more than statistics Sensitivitiy Plots NuFact04

  13. q13 Sensitiviy: Comparison of the coming Generation . NuFact04

  14. Adding a new reactor experiment identical detectors  many errors cancel NuFact04

  15. q13 Sensitiviy: Comparison of the next Generation . Huber, ML, Rolinec, Schwetz, Winter NuFact04

  16. Leptonic CP-Violation: Best Case today: sin22q13 < 0.2 assume: sin22q13 = 0.1 and combine: T2K + NOnA + Reactor  limits or signs of leptonic CP violation Huber, ML, Rolinec, Schwetz, Winter NuFact04

  17. Neutrino Factory: I & II _ P(MW) m‘s/year Tn+Tn (y)M(kt) -------------------------------------------------------------------------------- Neutrino factory I: 0.75 1020 5 10 Neutrino factroy II: 4.00 5.3*1020 8 50 • define benchmark neutrino factories: • baseline 3000km • magnetized iron detector  wrong sign m‘s simulations of various options: Barger, Geer, Raja, Whisnant, Marfatia, ... Cervera, Donini, Gavela, Gomez-Cadenaz, Hernandez, Mena, Rigolin, ... Bueno, Campanelli, Rubbia, ... Minakata, Yasuda, ... Freund, Huber, ML, Winter, ... ... NuFact04

  18. T2K T2K NOnA • different sensitivity reductions by systematics • correlations & degeneracies lead to severe sensitivity reductions • break C&D by combining different experiments of comparable potential NuFact04

  19. . NuFact04

  20. Measurement of CP Violation NuFact04

  21. Various Potential Options • superbeams: En≈ GeV  large low Z sampling calorimeters ≈ 50 kt • superbeams, b-beams: En ≈GeV hugeCerenkov detectors ≈ 1000 t • huge liquid Ar detectors ≈ 100 kt • huge scintillator detectors ≈ 30 kt • neutrino factory: En≈20-50 GeV large magnetized iron Calorimeters ≈ 40kt • large magnetized liquid Ar detectors ≈20kt • large OPERA-like emulsion detectors ≈5kt • laser driven acceleration, … Initially rate driven  improve by  combination of different E and/or L or „magic baseline“  combination of different channels or experiments  use energy spectrum NuFact04

  22. Combining: Silver Channels • golden channel: wrong sign m‘s • silver channel : t‘s • different oscillation probabilities  break degeneracies! Donini, Meloni, Migliozzi Autiero, et al. NuFact04

  23. Energy Resolution d=+p/2 d=0 d= -p/2 rate based degeneracies have different energy spectra 730km A. Rubbia  use energy resolution to break degeneracies NuFact04

  24. A Powerful Simulation Tool General Long Baseline Experiment Simulator P. Huber, ML, W. Winter see parallel talk! Release: Aug. 1, 2004 http://www.ph.tum.de/~globes hep-ph/0407xxx • C-based simulation software (GPL – free, for Unix systems) • extensive documentation & examples • 3 phase approach: • experiment definition withAEDL (Abstract Experiment Definition Language) • simulation of an experiment  3-n oscillations; scan „true values“ • analysis  event distriutions, ...., sensitivities, ... NuFact04

  25. Abstract Experiment Definition Language (AEDL) • predefined AEDL files for a number of experiments • allows easy modifications of „default“ experiments NuFact04

  26. AEDL Description of a Neutrino Factory !%GLoBES /* beam */ flux(#mu_plus)< @builtin = 1 @parent_energy = 50.0 @stored_muons = 5.33e+20 @time = 8.0 > $target_mass = 50 $bins = 20 $emin = 4.0 $emax = 50.0 /* cross section */ cross(#CC)< @cross_file = XCC.dat > /* baseline */ $baseline = 3000.0 $densitytab = {3.5} $lengthtab = {3000.0} $density_error = 0.05 /* energy resolution */ energy(#MINOS)< @type = 1 @sigma_e = {0.15,0.0,0.0} /* channels */ channel(#appearance)< @channel = #mu_plus: +: electron: muon: #CC: #MINOS > channel(#disappearance)< @channel = #mu_plus: -: muon: muon: #CC: #MINOS > /* rules */ rule(#rule1)< @signal = 0.45 @ #appearance @signalerror = 0.001 : 0.0001 @background = 1.0e-05 @ #disappearance @backgroundcenter = 1 : 0.0  @backgrounderror = 0.05 : 0.0001 @errordim = 0 @energy_window = 4.0 : 50.0 > NuFact04

  27. GLoBES Simulations sin22q13 d NuFact04

  28. Conclusions • MINOS, ICARUS and OPERA • improve leading oscillation parameters; should improve sin22q13 a little • T2K, NOnA and new reactor experiments • - further improved leading oscillation parameters • will improve sin22q13 by about one order of magnitude • with luck: sign(Dm2) or even CP phase • H2K, b-beams, neutrino factory • - can do all unless sin22q13 is extremely tiny; in any case precision n-physics! • very precise 3-n oscillation parameters • sin22q13 , sign(Dm2) and CP phase should be measured • unique impact on model building! R&D for b-beams, neutrino factories...  realistic parameters • simulate & compare  GLoBES http://www.ph.tum.de/~globes and hep-ph/0407xxx NuFact04

More Related