1 / 138

PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE NANO „miękie” spotyka NANO „twarde” Marek Pietraszkiewicz, Instytut Chemii Fizycznej PAN, 01-224 Warszawa, Kasprzaka 44/52, tel: 3433416 E-mail: pietrasz@ichf.edu.pl. ALLACH AKBAR!! NANO JEST WIELKIE!!. 1 nm = 10 -9 m.

kalila
Download Presentation

PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE NANO „miękie” spotyka NANO „twarde” Marek Pietraszkiewicz, Instytut Chemii Fizycznej PAN, 01-224 Warszawa, Kasprzaka 44/52, tel: 3433416 E-mail: pietrasz@ichf.edu.pl

  2. ALLACH AKBAR!! NANO JEST WIELKIE!! 1 nm = 10-9 m

  3. NANO NA NO

  4. KLASYFIKACJA NANO-OBIEKTÓW: ~3-100 nm A: OBIEKTY O ODMIENNYCH WŁAŚCIWOŚCIACH OD POJEDYNCZYCH ATOMÓW I OBIEKTÓW MAKROSKOPOWYCH B: WIELOFUNKCYJNE OBIEKTY O ROZMIARACH CHARAKTERYSTYCZNYCH DLA “NANO”

  5. PRZYKŁADY CHARAKTERYSTYKA OBIEKTÓW O ODMIENNYCH WŁAŚCIWOŚCIACH OPTYCZNYCH I ELEKTRONOWYCH 0-D, 1-D, 2-D, 3-D NANO-: koloidy, rurki, klastery, warstwy, krystality, proszki, sfery, sztabki, druty, kropki kwantowe PIERWIASTKI: metale szlachetne, platynowce, metale przejściowe, metaloidy ZWIĄZKI CHEMICZNE: półprzewodniki (CdS, HgTe, ZnS), izolatory (ZrO2, SnO2), magnetyki (Fe3O4)

  6. PRZYKŁADY SAMOORGANIZACJA SUPRAMOLEKULARNA POLIMERY WIELOFUNKCYJNE BIOCZĄSTECZKI I BIOPOLIMERY

  7. Occurance of nanoscale particulate materials. From presentation E. Clayton Teague, NNCO, April 2004.

  8. SUPRAMOLEKULARNE OBIEKTY O ROZMIARACH NANOMETRYCZNYCH • AGREGATY SUPRAMOLEKULARNE • HETEROPOLIANIONY • DENDRYMERY • FULLERENY

  9. SUPRAMOLEKULARNE OBIEKTY O ROZMIARACH NANOMETRYCZNYCH • AGREGATY SUPRAMOLEKULARNE

  10. NED SEEMAN http://seemanlab4.chem.nyu.edu/nano-oct.html DNA Borromean rings

  11. NED SEEMAN http://seemanlab4.chem.nyu.edu/nano-oct.html Truncated Octahedron A truncated octahedron contains six squares and eight hexagons. This is a view down the fourfold axis of one of the squares. Each edge of the truncated octahedron contains two double helical turns of DNA. The molecule contains 14 cyclic strands of DNA. Each face of the octahedron corresponds to a different cyclic strand. In this drawing, each nucleotide is shown with a colored dot corresponding to the backbone, and a white dot corresponding to the base. This picture shows the strand corresponding to the square at the center of the figure and parts of the four strands at the cardinal points of the figure. These strands are all shown with red backbones. In addition to the 36 edges of the truncated octahedron, each vertex contains a hairpin of DNA extending from it. These hairpins are all parts of the red strands that correspond to the squares. The strands corresponding to the hexagons are shown with backbones whose colors are yellow (upper right), cyan (upper left), magenta (lower left) and green (lower right). The molecular weight of this molecule as about 790,000 Daltons.

  12. NED SEEMAN http://seemanlab4.chem.nyu.edu/nano-oct.html Cube This representation of a DNA cube shows that it contains six different cyclic strands. Their backbones are shown in red (front), green (right), yellow (back), magenta (left), cyan (top) and dark blue (bottom). Each nucleotide is represented by a single colored dot for the backbone and a single white dot representing the base. Note that the helix axes of the molecule have the connectivity of a cube. However, the strands are linked to each other twice on every edge. Therefore, this molecule is a hexacatenane. To get a feeling for the molecule, follow the red strand around its cycle: It is linked twice to the green strand, twice to the cyan strand, twice to the magenta strand, and twice to the dark blue strand. It is only indirectly linked to the yellow strand. Note that each edge of the cube is a piece of double helical DNA, containing two turns of the double helix.

  13. SUPRAMOLEKULARNE OBIEKTY O ROZMIARACH NANOMETRYCZNYCH • HETEROPOLIANIONY

  14. Inorganic Chemistry Goes Protein Size: A Mo368 Nano-Hedgehog Initiating Nanochemistry by Symmetry Breaking, Achim Mueller,* Eike Beckmann, Hartmut Boegge,, Marc Schmidtmann, and Andreas Dress, Angew. Chem. Int. Ed., 41, 1162, (2001).

  15. 16 A. Muller, P. Kogerler :Coordination Chemistry Reviews 182 (1999) 3–17 Fig. 11. Some structural details of the novel supramolecular system {Mo36 ¦Mo148 } ({Mo36 } occupa-tion:20%). Part of the chain structure is shown, which is built up by linking the ring-shaped clusters{Mo148 } with three missing {Mo2 } groups. The interaction between host (in polyhedral representation)and guest (ball and stick) is due to 16 hydrogen bonds (dotted) and four sodium cations situated betweenhost and guest.

  16. Giant metal-oxide-based spheres and their topology: from pentagonal building blocks to keplerates and unusual spin systems A. Muller , P. Kogerler , A.W.M. Dress, Coordination Chemistry Reviews, 222 (2001) 193–218 Structural comparison of the {Mo 132- }- (left) and {Mo 72 Fe 30 }- type (right) clusters. Both consist of 12 {( Mo) Mo 5 } groups (blue, with the pentagonal MoO bipyramids in bright blue). The different linker groups L ({ Mo }: L = {Mo V }, red; {Mo Fe }: L = {Fe}, yellow) can be used for a novel type of sizing

  17. Giant metal-oxide-based spheres and their topology: from pentagonal building blocks to keplerates and unusual spin systems A. Muller , P. Kogerler , A.W.M. Dress, Coordination Chemistry Reviews, 222 (2001) 193–218 Structural comparison of the {Mo 132- }- (left) and {Mo 72 Fe 30 }- type (right) clusters. Both consist of 12 {( Mo) Mo 5 } groups (blue, with the pentagonal MoO bipyramids in bright blue). The different linker groups L ({ Mo }: L = {Mo V }, red; {Mo Fe }: L = {Fe}, yellow) can be used for a novel type of sizing

  18. Giant metal-oxide-based spheres and their topology: from pentagonal building blocks to keplerates and unusual spin systems A. Muller , P. Kogerler , A.W.M. Dress, Coordination Chemistry Reviews, 222 (2001) 193–218 Fig. 1. Polyhedral representations of the {Mo154 } (left) and the {Mo176 } (right) clusters showing three different building groups (the individual polyhedra represent the MOn coordination geometries). One {Mo8 } group is outlined, two {Mo2 } groups are shown in dark gray, and two equatorial {Mo1 } units are shown encircled.

  19. SUPRAMOLEKULARNE OBIEKTY O ROZMIARACH NANOMETRYCZNYCH • DENDRYMERY

  20. Startburst Dendrimers: Fundamental Building Blocks for a New Nanoscopic Chemistry Set Wei Chen Turro Group Department of Chemistry Columbia University November 20, 1997

  21. What are Dendrimers? I. Linear II. Cross-linked III. Branched IV. Dendritic (tree-like) Dendrons Dendrimers Dendrigrafts other names: Molecular Trees, Cascade molecules Tomalia et al. Chemistry & Industry1997, 416

  22. History of Starburst Dendrimers • 1944 Melville First suggestion of tree-like molecules • 1978 Vogtle First synthesis of cascade molecules • 1983 Denkewalter Reported synthesis of poly(lysine) molecular trees • with asymmetical branch junctions • 1983 De Gennes, Hervet Calculation of starburst, dense-packed generation • limit for poly(amidoamine) molecular trees • 1983 Tomalia First successful synthesis of a symmetrical branched • high-molecular-weight dendrimers • 1990 Frechet, Miller Convergent method for the synthesis of dendrimers .. ‘ Present: Commercially available dendrimer: poly(amidoamine) (PAMAM), poly(ester) poly(propylene imine) Over 50 known dendrimer families

  23. The First Synthesis of Dendritic Molecules Co(II)/NaBH4 R-NH2 CH3OH, 2h AcOH, 2h AcOH, 2h 76%, 69% 66%, 44% Co(II)/NaBH4 CH3OH, 2h 66% 35% R = C6H5-CH2, cyclo-C6H11 Buhleier et al. Synthesis1978, 155

  24. C A Synthesis of Dendrimers: the Divergent Method construct from the root to the leaves + Key Contributors R. Denkewalter - Allied Corp. D. Tomalia - Michigan Molecular Institute Ardoin et al., Bull. Soc. Chim. Fr.1995, 132,, 875

  25. c fp s c s s c s fp fr fp fp s s s c s c c Core c c fr Synthesis of Dendrimers: the Convergent Method construct from the leaves to the root s-fr + 1 2 Key Contributors ‘ J. Frechet - Cornell Univ. T. Miller - AT&T Bell Labs Hawker et al., J. Am. Chem. Soc.1990, 112, 7638

  26. Comparison of the Two Methods Divergent Method Advantage Able to construct high generation dendrimers. Disadvantage 1. Defects on the surface of higher generation dendrimers 2. Elimination of excess reagents after each sequence. Convergent Method Advantage 1. A limited number of growth reactions per sequence. 2. Ease of purification and characterization. 3. Able to attach different types of dendrons into one dendrimer. Disadvantage Steric constraints for the attachment of large dendrons to the core. Tomalia et al., Topics Curr. Chem. 1993, 165, 193 Ardoin, et al., Bull. Soc. Chim. Fr1995, 132, 875

  27. Synthesis of PAMAM Dendrimers (A) (B) (excess) Gen. 0 (A, B) (A, B) Gen. 1 Gen. 2 Full Generation Half Generation Tomalia et al. Macromol.1986, 19, 2466.

  28. Characterization of Dendrimers • 1. Elemental composition: • C, H, N analysis; MS • 2. Molar mass versus generation: • low-angle laser light scattering; MS; electrophoresis • 3. Homogeneity: • size exclusion chromotography(SEC); EM; AFM; STM; • capillary electrophoresis • 4. Interior and end group: • IR; 15N, 13C, 31P, 29Si, 2H and 1H NMR; titration • 5. Structures: • 13C, 2H and 1H NMR; EM; electrospray MS; • fluorescence probe analysis; computer simulation. • 6. Dimension • intrinsic viscosity measurements; SEC; computer simulation; EM; AFM; • electrophoresis; neutron scattering. Tomalia et al., Angew. Chem. Int. Ed. Engl. 1990, 29, 138.

  29. Predictable MW and Molecular Dimension • Generation MW Number of Diameter (Å) • Surface Groups predicated Actual • CPK SEC • 0 359 3 9.6 (19.2) 10.8 • 1 1043 6 12.8 (28.8) 15.8 • 2 2411 12 17.6 (41.6) 22.0 • 3 5147 24 24.1 (51.2) 31.0 • 4 10619 48 30.6 (65.6) 40.0 • 5 21563 96 38.5 (81.6) 53.0 • 6 43451 192 47.5 (91.2) 67.0 • 7 87227 384 61.8 (104.0) 80.0 • 8 174779 768 78.0 (117.0) 92.0 • 9 349883 1536 98.0 (130.0) 105.0 • 10 700091 3072 123.0 (143.0) 124.0 G Polydispersity Mw/ Mn= 1.01-1.08 Branching ideality > 95 mol% Number of Surface Groups = NcNbG Nc = 3, Nb = 2 Tomalia et al., Angew. Chem. Int. Ed. Engl. 1990, 29, 138.

  30. Computer-Simulated Molecular Graphics Gen. 3 Gen. 4 Gen. 6 Gen. 5 Tomalia et al., Angew. Chem. Int. Ed. Engl. 1990, 29, 138.

  31. Aspect Ratio Iz/ Ix 5.0 4.0 3.0 2.0 1.0 Gen 0 1 2 3 4 5 Shape versus Generation computer simulation fluorescence probe ESR probe early generation: open hemispherical dome later generation: closed spheroid Naylor et al., J. Am. Chem. Soc. 1989, 111, 2339.

  32. A New Route to Organic Nanotubes from Porphyrin Dendrimers, Yoonkyung Kim, Michael F. Mayer, and Steven C. Zimmerman, Angew. Chem. Int. Ed., 42, 1121 (2003)

  33. Dendritic Polymers in Biomedical Applications: From Potential to Clinical Use in Diagnostics and Therapy, Salah-Eddine Stiriba,Holg er Frey,* and Rainer Haag, Angew. Chem. Int. Ed., 41, 1329 (2002).

  34. Fullereny

  35. FULLERENY

  36. FULLERENY

  37. SYNTEZA NANOMATERIAŁÓW W FAZIE CIEKŁEJ Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, B.L. Cushing, V.L. Kolesnichenko, J.O’Connor, Chem. Rev., 104, 3893 (2004) Nanoparticle Synthesis by Coprecipitation, Nucleation, Growth Growth Termination and Nanoparticle Stabilization Coprecipitation Synthetic Methods Synthesis of Metals from Aqueous Solutions Precipitation of Metals by Reduction from Nonaqueous Solutions Precipitation of Metals by Electrochemical Reduction Precipitation of Metals by Radiation-Assisted Reduction Precipitation of Metals by Decomposition of Metallorganic Precursors Precipitation of Oxides from Aqueous Solutions Precipitation of Oxides from Nonaqueous Solutions Coprecipitation of Metal Chalconides by Reactions of Molecular Precursors

  38. SYNTEZA NANOMATERIAŁÓW W FAZIE CIEKŁEJ Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, B.L. Cushing, V.L. Kolesnichenko, J.O’Connor, Chem. Rev., 104, 3893 (2004) Microwave-Assisted Coprecipitation Sonication-Assisted Coprecipitation Sol-Gel Processing Sol-Gel Chemistry of Metal Alkoxides Sol-Gel Chemistry of Aqueous Metal Cations Condensation Reactions of Hydrolyzed Metals Xerogel and Aerogel Formation Gel Sintering Sol-Gel Synthetic Methods Sol-Gel Syntheses of Oxides Sol-Gel Syntheses of Other Inorganics Sol-Gel Processing of Nanocomposites

  39. SYNTEZA NANOMATERIAŁÓW W FAZIE CIEKŁEJ Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, B.L. Cushing, V.L. Kolesnichenko, J.O’Connor, Chem. Rev., 104, 3893 (2004) Microemulsions Synthesis of Core-Shell and Onion-Structured Nanoparticles Microemulsion Syntheses in Supercritical CO2 The Germ-Growth Method Hydrothermal/Solvothermal Processing of Nanoparticles and Nanocomposites Principles of Hydrothermal and Solvothermal Processing Hydrothermal and Solvothermal Methods Solvothermal Processing of Nanocrystalline Oxides Synthesis of Nanocrystalline Nitrides and Chalcogenides Templated Syntheses Biomimetic Syntheses Surface-Derivatized Nanoparticles

More Related