Global warming
This presentation is the property of its rightful owner.
Sponsored Links
1 / 75

Global Warming PowerPoint PPT Presentation

  • Uploaded on
  • Presentation posted in: General

Global Warming. So What? . January 2014 . Pay ranchers and farmers. In brief,. Credit. changing. to move carbon from the air into soils . Why? It ’ s a long story. . w e already have too much CO 2 in the air. There’s a big lag effect. .

Download Presentation

Global Warming

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript

Global warming

Global Warming

So What? .

January 2014 .

Pay ranchers and farmers

Pay ranchers and farmers

In brief,



to move carbon

from the air into soils.


It’s a long story. .

we already have too much CO2 in the air.

There’s a big lag effect. .

ice to dark water, fewer sulfates, energy out to = in.

Earth will heat lots more,

Too much heat is bad for crops.

Don’t let our food supply dry up.

even without more CO2.

Climate changes without humans

Climate Changes without Humans .

Climate has been changing for hundreds of millions of years (MY).

Mostly, it’s been much warmer, with much higher CO2 levels.

Vast lava eruptions (Siberian & Deccan Traps, etc.) added CO2 to the air.

But algae, plants and seashells removed CO2 from the air,

making coal, oil, gas & limestone, as conditions permitted.

When continents collided & mountains rose, rock weathering speeded up.

This also removed CO2 from the air, into silt & then the oceans.

Himalayan weathering has driven CO2 levels down for some 50 MY.

CO2 levels were lower than today’s during ice ages over the past 2 MY.

Smallvariations in Earth’s tilt, and how round its orbit is, drive their timing.

Solar changes* affect Earth’s temperature. .

So do Earth’s natural cycles, like El Niño / La Niña. . .

Still, summer 2012 was hot, as was summer 2011. .

Will this become the new normal? .

* sunspot cycles.


the sun slowly brightens,

warming Earth more,

by 3°C / 100 MY.

Map of 26 us places

Map of 26 US Places .

• Astoria

Consider 35 years of US daily high temperatures, June thru September,

1978-2012, in 26 cities scattered around the US.

Jointly, these places have gained very few people since 1980 (0.03%/year),

while US energy use per person shrank 0.28% per year. .

Thus, urban heat island effects in these places actually shrank. .

• Butte

Duluth •






Moline •


•Ferndale - BWI

• Oakland


Jasper •



Rolla •


• Enid



• Yuma





Warming table graph

Warming 3.14°F/century,

By 2100, with 5.8°F warming per century,

Saginaw’s summer would be almost as hot as Bristol TN’s now,

while Bristol’s would be almost as hot as Tupelo MS’s today.

Warming Table & Graph .

By 2100, with 12.1°F warming per century,

Saginaw’s summer would be almost as hot as Tupelo’s today.

Bristol’s would be as hot as Waco’s now, and

Moline’s almost as hot as Waco’s.

Since 1994, when the US warmed faster than its trend,

the world warmed slower than its trend.

+5.8°F / century trend

-2.4°F / century

+12.1°F / century

Aspen’s 2012 summer heat was a once per 72 year event,

a record 3.88°F above average.

it’s 107 years till 2012’s summer heat is its new normal.

Boston’s summer 2012 heat occurs once / 3 years.

But it was 0.09°F cooler than expected, given

4.40°F / century warming (+0.73°F since ‘95-6).

26 individual city graphs are

shown on “Additional Slides”.

Using this data, 2012’s summer heat becomes a new US normal (once / 2 years) in 22 years (2034).

A US summer as hot as 2012 is already expected once every 35 years

Warming was fastest in Roswell (+15.8°F / century), Bristol & Butte.

2012 was cooler than normal (1978-2012) in Astoria, Bartow, Houma & Oakland; and

cooler than the new normal also in Boston, Bristol, Hampton, & Macon; but

record hot in Aspen, Butte, Duluth & Norfolk NE

& as hot as 2011 every 32.

Bartow & Houma cooled.

, & in 2011 in Enid, Macon, Roswell, Waco & Yuma.

Rain becomes more variable

Rain Becomes More Variable .

So What?


  • Rainfall becomes more variable.

  • Wet areas tend to get more rain than now.

  • Dry areas tend to get less rain than now.

  • Around the Arctic gets lots more rain

  • (&, at 1st, more snow, then less), but

  • mid-latitudes (20° to 45°) tend to dry out.

  • Worldwide, we get a little more rain, .

  • except around the Arctic, we get

  • more hours and days without rain.

  • In other words,

  • we get more downpours* and floods,

  • yet also longer‡, drier, hotter droughts.


* +3.9% / °F

‡ +2.6% / °F

Droughts worsen

Droughts Worsen .

Droughts Worsen.

Deserts Spread.

The Culprit?


Greenhouse effect

Greenhouse Effect

Dark Earth absorbs sunlight.

Earth warms up and

radiates heat.

Greenhouse gases in the

air (GHGs) intercept some

outgoing radiation and

re-radiate it back down.

This warms Earth more.

More GHGs = warmer still.

Cyclic changes in solar output have warmed and cooled Earth modestly.

By now, human GHGs warm Earth much more than solar changes do.

Light surfaces reflect sunlight. Those surfaces don’t warm Earth much.

Changing a light surface (ice) to a dark one (water) warms Earth.

Changing a dark surface (forest) to a lighter one (desert) cools Earth.

Greenhouse gases

Greenhouse Gases

•GHGs warm Earth by 32°C (58°F).

Earth would average 0°F without them.

•Water vapor (H2O) does 2/3 of this warming.

But H2O stays up for only 2-3 weeks, on average.

Concentrations vary many-fold over time and space.

As Earth warms up, evaporation increases H2O in the air.

This amplifies warming from other GHGs a lot. So,

scientists often treat H2O not as a GHG, but a feedback for other GHGs.

Carbon dioxide (CO2) does 55% of the remaining net warming.

Almost all US CO2 comes from burning coal, oil & natural gas.

Per unit of energy, coal emits 4 units of CO2, oil 3, natural gas 2.

Methane (CH4, natural gas) does 16%.

CH4 comes from wetlands, cows, leaky coal mines & gas wells, rice, landfills.

CFCs (old air conditioners, ozone hole) do 11%,

Nitrous oxide (N2O - fertilizers) does 5%,

ozone (O3) 10%, net.

black soot most of the rest.

Vostok ice core data

Vostok Ice Core Data .

+2011 CH4level

~ 1820 ppb

Vostok Ice Core Data

For hundreds of thousands of years, temperatures and levels of GHGs CO2 and CH4 in the air have tracked each other closely.

The difference between 190 and 280 ppm of CO2 was 10°C

(18°F) at Vostok and

ice almost a mile thick covering Chicago.

Warming led CO2 and CH4 levels, causing some carbon to move from permafrost and oceans to the atmosphere.

+2011 temperature

Vimeux, Cuffey & Jouzel,

Earth and Planetary Science

Letters 203: 829-843 (2002)

Thousand Years before Present

ppm = parts per million ppb = parts per billion

Co 2 levels in the air

CO2Levels in the Air.



highest level in 15 million years

Earth then was 5-11°F warmer.


Since 1880)

Seas then were 80-130 feet higher.



CO2 level as high 3.0-3.5 million years ago

Earth then was 3-6°F warmer.

Seas then were 65-120 feet higher.

This means ice then was gone from almost all of Greenland,

some of East Antarctica.

most of West Antarctica, and

300 ppm

(maximum between ice ages)

CO2 levels nowwill warm Earth’s surface 5°F

We face a lag effect.

So far, half the CO2 we’ve emitted has stayed in the air.

The rest has gone into carbon sinks.

, not just the 2°F seen to date.

CurrentCO2 levels are alreadytoo high for us.

- into oceans, soils, trees, rocks.

CO2 Levels in Air

Sun vs temp

Sun vs Temp .

∆ °C

Watts / m2

- World Radiation Center


Solar Irradiance at Earth Orbit, Annual Average

Global Air Temperature, Land Surface, 3-Year Moving Average

In 2007, solar output was the lowest yet recorded (in 28 years), but

Earth’s air temperatures (land surface) were the highest yet recorded.


Clouds .

•Half the sunlight reaching our atmosphere makes it to the surface.

Barriers include blue sky (not black),


•Clouds reflect some sunlight away, cooling Earth.

They also keep outbound heat in, warming Earth, esp. at night.

Low clouds cool Earth more than they warm it.

High clouds do the reverse.

Clouds cover a little more than half of Earth.

On balance, they cool Earth, but

Changes in cloud cover affect global temperature.

So do changes in % high clouds vs low clouds.

•Many factors affect cloud formation & distribution.

At night & going up over mountains, air cools.

Cool air holds less H2O,

clouds, haze&the ozone layer.

warming makes clouds sparser.

so it will often cloud up & rain.

Sulfates cooling

Sulfates &Cooling

Dark sulfates in the air block sunlight.

Sulfates make haze

More sulfates= cloudier = cooler.

Most sulfates come from burning coal,

SO2goes up the smokestacks.

GHGs stay in the air many years,

GHG levels keep rising.

Sulfates now offset ~35% of GHG warming.

As we stop sending up SO2,

That cools Earth.

& become cloud condensation nuclei.

some from volcanoes.

It changes to SO4 (sulfate) up in the air.

sulfates usually for days.

Sulfate levels don’t.

Maybe 0.6°C.

warming will catch up.

Sulfate cooling un smooths ghg warming


sulfates still

3x 1880 levels


NASA GISS - Earth’s

7,000 weather stations

- adjusted for urban

heat island effects

Brown .



over ..


India. .

Sulfates fall 27%.


Sulfate Cooling Un-Smooths GHG Warming

Coal-Fired Power Plants




fall 13%.

Sulfatesup 110%.



up 46%.





up 52%


major cooling









cuts start.

Santa Maria,


Pelee erupt

Agung erupts









less SO2

up the stacks
























Sulfate Levels in Greenland Ice

milligrams of Sulfate per Ton of Ice

(Intergovernmental Panel

on Climate Change, 2002)

Land warms more faster than oceans

Land warms more (faster) than oceans.

It warms more when & where it’s coldest:

in winter,

at night,

& especially

toward the poles.

Earth is heating up

Earth Is Heating Up.

Earth now absorbs 0.25%more energy than it emits –

a 300 millionMWheat gain

300 million MW

This absorption has been accelerating, from near zero in 1960.

Airat the land surface is 1.0°Cwarmer than a century ago.

85% of that warming happened in the last 33 years.

Earth will warm another 0.6°C .

just so it emits enough heat to balance absorption.

•Airat the sea surface is 0.8°C warmerthan a century ago.

84-90% of the energy Earth absorbs heats the oceans.

If it all went to melt Greenland ice, the ice would vanish in 70 years..

The oceans have gained ~10 x moreheat in 40years

than ALL the energyhumans have EVER used.

~ means “approximately, roughly, is about equal to”

1°C = 1.8°F.

One MW can power several hundred US homes.

(±75 million MW)

=70 xglobalelectric supply

= 20x human energy use.

, so far,

Ocean heat content

Ocean Heat Content .

Of the net energy absorbed by Earth from the Sun, ~84% went to heat the oceans,

7% melted ice, 5% heated soil, rocks and trees, and 4% heated the air. Levitus, 2005

From 2007 to now, ocean heat gain has switched to mostly (70%) below 700 meters deep.

Since 2007, ~90% goes to heat oceans, less to air and others. We notice air heating slower.

Change since 2006

= 1.22 x 1022

Joules / year: .


Heat Content (1022 Joules)


1022 Joules =

101 years of

US energy use,

at 2000-13 rate

Change since 1991 =

1,800 years of US energy use

=0.85 x 1022 Joules / year

Change since 1967 = 28 x 1022Joules

= 3,000 years of US energy use

= 0.61 x 1022 Joules / year

Tipping points

Tipping Points

Report to US & British Legislators - January 2006

in the US, to Senator Olympia Snowe (R-ME)

What would make climate change accelerate,

so natural forces defeat our efforts to slow it?

Disappearance of sea ice

means more heat is absorbed by the water below.

Carbon sinks fade in oceans & forests.

Some become carbon sources.

3Methane release from permafrost

revs up warming in a vicious circle.



Hurricanes convert ocean heat to powerful winds & heavy rains.

Intense hurricanes are becoming more common.

Higherhurricane energy closely tracks sea surface warming.

Stronger hurricanes bring higher storm surges and worse floods.

More Heat - So?

East of Caribbean, west of Africa

6-18°N, 20-60°W

All Ocean Basins Combined



Emanuel, 2005

Webster, 2005

Carbon in the oceans

Carbon in the Oceans

1/4 of our carbon emitted has gone into the oceans.

Added carbon has made oceans 30% more acidic .

(Oceans are adding acid 100 times faster than in a million years.)

As a result, creatures find it ever harder

to extract calcium from seawater to build shells.

Consider corals.

Reefs of coral shells support myriad species, many billions of fish.

Already, 60% of corals cannot form shells.

At current rates, by 2100 ocean acidity would double or more.

No corals could form shells and reefs would all erode away.

Warmer water holds less dissolved oxygen.

Fish & mollusks suffer.

The mix of sea creatures will change, a lot.

, so far.

Reservoirs in the sky

Reservoirs in the Sky

Most mountain glaciers dwindle ever faster:

in the Alps, Andes, Rockies, east & central Himalayas.

65% of the latter shrank from 2000 to 2008, including 80% in Tibet.

When Himalayan glaciers vanish, so could

the Ganges River (Indus, Yellow, etc.) in the dry season,

when flows already are only a few % of average.

When Andes glaciers vanish, so does

most of the water supply for Lima and La Paz.

Mountain snows melt earlier.

CA’s San Joaquin River (Central Valley, US “salad bowl”)

could dry up by July in most years.

The Colorado River’s recent 10-year drought was

the worst since white men came..

Comparing 2003 to 1986 and before, worldwide, .

forestfires burned 6 x as much area / year. .

Annual US area burned by firewill double again by 2050.

Earth s thermostat

Earth’s Thermostat.

Arctic Ocean ice is shrinking fast..

Minimum ice area fell 37% in 34 years,

The bright ice could melt away by fall in 3-7years

The dark water absorbs far more heat than ice: .

Greenland’s netice-melt rate rose5 xin the past 15 years.

So, the ice cap’s simple life expectancy fell from 60 millennia to 11.

Its annual net melt-water is already 1/2 of US water use.

Antarctica’syearly net ice-melt (W minus E) is ~ 1/3 of Greenland’s.

Its acceleration is slower..

Seas will likely rise 1 to 7 feet by 2100

and 100+ feet over centuries.

As the ice recedes,

Earth absorbs more heat.

U of Washington

It will warm more,


even without more CO2.


The ice got thinner too.

U of Bremen

,53% in the last 10.

while volume fell 72%

& be gone all summer in 7-20.

so far, like 20 extra years of CO2.

It has 9 x the ice

& will last much longer.

Methane tipping point

Methane Tipping Point?

Thawing Arctic permafrost holds5xMOREcarbon

than ALL the carbon humans haveemitted from fossil fuels.

In fact, it holds twice as much as Earth’s atmosphere.

Permafrost area shrank 7%from 1900 to 2000.

It may shrink 75-88% more by 2100.

Already, Arctic permafrost emits ~ carbon as all US vehicles.

Part emerges as methane (CH4), changing to CO2 over the years.

Thawing permafrost can add ~100ppm* of CO2 to the air by 2100,

and almost 300 more by 2300.

Seabed methanehydrates may hold a similar amount,

but so far they are releasing only 10% as much carbon.

There may be far more permafrost carbon under Antarctic ice.

55 million years ago, .

from thawed Antarctic permafrost .

warmed Earth by 6°C, far more over the Arctic Ocean.

Warming now is 7-30times as fast as then.

* 100 ppm

~ ppm from

fossil fuels

to date.

scads of carbon

& later CH4 hydrates

Hot dry

Hot &Dry

From 1979 to 2005, the tropics spread. .

Sub-tropic arid belts grew ~140 miles toward the poles, .

a century ahead of schedule. .

That means our jet stream moves north more often.

In turn,the US gets hot weather more often.

With less temperature contrast between the Arctic & mid-latitudes,

the jet stream slows and meanders N-S much more: 1-2K miles. .

hot dry air lingers longer (heat waves)

2011-12 was America’shottest on record..

Over September 2011 - August 2012, relative to local norms,

33 states were drier than the wettest state (WA) was wet.

Over 2012,44 of 48 states were drier than normal.

Severedrought covered a record 35-46% of the US .

Drought reduced the corn crop by a quarter. .

The soybean crop was also hit hard.

The Mississippi River neared a record low..

What Else?


, as does moist rainy air (floods).

, for 39 weeks.

Record prices followed.

Lake Michigan-Huron hit one.

Notable recent droughts

Notable Recent Droughts

When I was young, the leading wheat producers were the

US Great Plains, Russia’s steppes, Canada, Australia, and Argentina’s Pampas. .

WhenWhereHow Bad

2003 France, W Europe record heat

2003-10 Australiaworst in millennia

2005 Amazon Basinonce a century

Atlanta, US SEonce a century

2007 Europe: Balkansrecord heat, Greek fires

2007-9 Californiarecord low rain in LA.

2008-9 Argentine Pampas worst in half century

2008-11 North China~worst in 2 centuries.

2009 Indiamonsoon season driest since 1972

2010 Amazon Basinworse than once a century

2010 Russiarecord heat, forest fires.

2011 Texas, Oklahoma record heat & drought

2012 US: SW, MW, SEmost widespread in 78 years; record heat

#3 now

hotter in 2012

, 20-70K die.

, hundreds die

, hundreds die

CA worse in 2013.

China now #1 in wheat.

#2 in wheat

15K die.

Wheat prices up 75%.




Groundwater .

Over 1994-2007, desertsgrew from 18 to 27% of China’s area..

Desert growth is worse where the Sahara marches into Africa’s Sahel. .

Yearly net US groundwater withdrawals for irrigation grew since 1950, .

from 1.6 to 4.4% of US water use now. .

1/5 of wheat is irrigated in the US, 3/5 in India, 4/5 in China. .

Central CA loses enough to irrigation yearly to fill Lake Erie in 100 years. .

Groundwater loss from India’s Ganges Basin would fill Lake Erie in 10. .

With more evaporation & irrigation, many water tables fall.

Worldwide, irrigation wells chase water ever deeper..

Many wells in China’s wheat belt must go down 1,000 feet for water. .

Since 1985, halfthe lakes in Qinghai province (China) vanished. .

92% in Hebei(around Beijing),

Inland seas and lakes dry up& vanish .

the Aral Sea, Lake Chad (Darfur), Lake Eyre, Sea ofGalilee. .

Lake Mead water dropped 137 feet over 2000-10.

More riversfailtoreach the sea:.

Is That All?

So, the Ogallala Aquifer dwindles.

3-20 feet a year.

Water prices rise.

as water tables dropped below lake beds.

, for example:

50/50 it’s too low to use by 2021.

Yellow,Colorado, Indus, Rio Grande, etc.

Carbon sinks fading

Carbon Sinks Fading?

Severe drought hit 45% of North America in 2002,

so plants absorbed 50%less CO2.

The AmazonBasin’s 2010 drought turned its rainforest

into a net carbon source for the year.

Its emissions exceeded China’s .

Things will likely get worse this century, as Amazon forests dry out.

Since 1979, its dry season has grown longer by 1 week / decade.

Its trees hold 1/4 of carbon in fossil fuels burned to date: ~25 ppm.

The oceans warmed 0.15°C over 1997-2004, so

planktonabsorbed 7%less CO2.

Warming was far strongest in the North Atlantic.

CO2 uptake therefell by half.

However, the bottom line is

the % of the carbon we emit that stays in the air has not risen.

Temperate and sub-Arctic forests are taking up more carbon.

- for the 2nd time in 6 years.


Phytoplankton .

Phytoplankton levels in the oceans .

fell 40% since the 1950s: .

Findings are based on opacity of near-surface water.

D. Boyce, M. Lewis, B. Worm Nature 4/28/10 .

1These tiny plants form the base of the ocean food web.

2Warmer layers on top keep cold water below from rising.

Less turnover brings fewer nutrients up for plankton growth.

3Plankton absorb CO2. Perhaps not so much any more.

4They have supplied half the world’s oxygen.

Earth has a 2,000-year oxygen supply, always being refreshed.

Debate and research continue on if phytoplankton are actually declining, or the findings are artifacts of data treatment. .

D. Mackas; R. Rykaczewski & J. Dunne; A. McQuatters et al.: Nature 4/14/11


1% / year since 1979.

Turning wheat into cactus

Turning Wheat into Cactus .

In 2005-6, scientists calculated how climate would change

for 9 Northeast and 6 Great Lakes states in 2 scenarios:

#1 - a transition away from fossil fuels, or

#2 - continued heavy reliance on them(businessasusualemissions).

By 2085,

averaged across 15 states, the climate change would be like

moving 330 miles to the SSW (coal & oil use dwindle), or

moving 650 miles to the SSW (heavy coal & oil use).

Consider central Kansas, heart of wheat country.

330 miles to the SSW lies the area from Amarillo to Oklahoma City.

650 miles to the SSW lies the area around Alpine & Ft. Stockton, TX.

2 people / square mile. Cactus grows there.

Mesquite & sagebrush too.

No wheat

Un chief on climate change

UN Chief on Climate Change .

Some scientists are saying publicly that if humanity goes on with business as usual, climate change could lead to the collapse of civilization, even in the lifetime of today's children.

United Nations Secretary General Ban Ki-Moon said “I think that is a correct assessment.” He added carefully “If we take action today, it may not be too late.”

September 24, 2007

By 2059 once a century drought can cover 45 of earth

By 2059, “Once a Century” Drought Can Cover 45% of Earth.

1969Supply-Demand Drought Index 1999.


as Usual .


2029 2059

in 2059

2 x CO2


+14% rain

Climate Model:



Institute for

Space Studies


Fig. 1 in David Rind, R. Goldberg, James Hansen, Cynthia

Rosenzweig, R. Ruedy, “Potential Evapotranspiration and

the Likelihood of Future Droughts,”Journal of Geophysical

Research, Vol. 95, No. D7, 6/20/1990, 9983-10004.



0 1 5 16 36 36 16 5 1 0

% Occurrence in Control Run

Projected droughts by year

Projected Drought Conditions

Projected Droughts by Year .

Fig. 2 in Rind et al., 1990

Land Surface, except Antarctica



June-August, Business as Usual Emissions

Based on Supply-Demand Drought Index





Occurrence in Control Run



“Once a century” drought can cover 45% of Earth’s land by 2059.

Over 2000-04, the average frequencies are 18% for “Drought” and 33% for “Dry”.

A weighted average for “as dry as 11% of the time” drought is ~ 27%.

Droughts are spreading already

Droughts Are Spreading Already.

Switch from what could happen to what has happened already.

30% = 16 million square miles

combined effect

10 million more

square miles

Compare 2002

to 1979.

11% of the area during 1951-80:

once per 9 years

Area whererain is scarce

increased by quite a bit:

3-6 million square miles.

Evaporation increased,

by a lot since 1987.

Compare 30% actualsevere drought area in 2002 (11% of the time during 1951-80) to 27% projected for 2000-2004 in previous slide.

from Fig. 9 in Aiguo Dai, Kevin E. Trenberth, Taotao Qian [NCAR], "A Global Dataset of Palmer Drought Severity Index for 1870-2002: Relationship with Soil Moisture and Effects of Surface Warming,”Journal of Hydrometeorology, December 2004, 1117-1130

Droughts spread, as projectedor faster.

Evaporation at work

Earth’s area in severe droughthastripledsince 1979.

Over 23 years, the area with severe drought grew by the size of North America.

Very wet areas

Very Wet Areas .

The combined decrease was 6% from 1979 to 2002,

but only 3% from the 1950-80 mean to the 1992-2002 average.

20% = 10.6 million square miles

Rainyarea shrank & grew.

Compare 2002

to 1979.

During 1950-1980, the precipitation effect

made 11.2% of areas very wet. Cooling

(1957, ‘66, ‘77, ‘79) kicked that up to 11.5%.

Once per 9 years.

combined effect: decrease 3-6%

(1-3 million square miles)

Evaporation increased.

Over 23 years, the soggy area shrank by the size of India, more or less.



Severedroughthas arrived,

Severe droughtnow afflicts an area the size of Asia.

So, farmers mine groundwater ever faster for irrigation.

From 1979 to 2002 (+0.5°C) .

1) The area where rain is scarce

increased by the size of the United States.

Add in more evaporation..

2) The area with severe drought

grew by the size of North America.

3) The area suffering severe drought tripled.

4)The similarly wet area shrankby the size of India.

as projected

or faster.

What drives drought

What Drives Drought?

The water-holding capacity of air rises

exponentially with temperature.

Air 4°C warmer holds 33% more moisture

at the same relative humidity.

(That’s the flip side of “air cools.

More moisture in the air does not equal more clouds.

To maintain soil moisture,

~10% more rain is required to offset each 1°C warming.

Warmth draws more water UP (evaporation), so

less goes DOWN (into soils) or SIDEways (into streams).

More waterisstoredin the air,lessinsoils.

Satellites are already showing more water vapor in the air.

Not quite all the water that goes up comes back down.

It holds less H2O, so it clouds up & rains.”)

Droughts why worry

Droughts - Why Worry? .

Droughts - Why Worry?

2059 - 2 x CO2(Business as Usual Emissions).

More moisture in the air,

AverageUS stream flowsdecline 30%,

Tree biomass in the eastern US falls by up to 40%.

More dry climate vegetation:

The vegetation changes mean

•Biological Net Primary Productivity falls 30-70%.


•Satellites show browning of the Earth began in 1994. .

Rind et al., 1990

but 15-27% less in the soil.

despite14%more rain.

savannas,prairies, deserts

Fung 2005

Zhao 2010

Crop yields fall

Crop Yields Fall.

United States: 2059 Projections - doubled CO2 - Business as Usual

Great Lakes, Southeast, southern Great Plains

Corn, Wheat, Soybeans

2 Climate Models (Scenarios) .


Goddard Institute for Space Studies

Yieldsfall30%, averaged across regions & crops.


Geophysical Fluid Dynamics Lab

Yieldsfall50%, averaged across regions & crops.

CO2 fertilization not included .

So things won’t be this bad, especially this soon. Temperature effects of doubled CO2 will keep growing, eventuallyto 4.2 or 4.5°C, but over many decades.

CO2fertilization (2 x CO2) boosts yields 4-34% in experiments, where water and other nutrients are well supplied, and weeds and pests are controlled. That won’t happen as well in many fields. Groundwater and snowmelt for irrigation grow scarcer in many areas. Other factors (esp. nitrogen) can limit growth. CO2 fertilization has diminishing returns.

Rind et al., 1990

- 3 of the big 4 crops (rice is the 4th)

(based on 4.2°C warmer, 14% more rain)

(based on ~ 4.5°C warmer, 5% less rain)

Photosynthesis co 2

Photosynthesis & CO2 .

Plants evaporate (transpire) water in order to

[like blood]

get it up to leaves, where H2O & CO2 form carbohydrates,

pull other soil nutrients up from the roots to the leaves, and

[like sweat]

cool leaves, so photosynthesis continues & proteins aren’t damaged.

When water is scarce,

fewer nutrients (nitrogen, phosphorus, etc.) get up to leaves.

With more CO2, leaf pores narrow, so less water evaporates.

This slows water loss in droughts.

But it also heats up leaves, harming plant growth when it’s hot.

So, with warming, more CO2, and less water,

leaves make more carbohydrates, but fewer proteins.

Warming and falling yields

Warming and Falling Yields .

Warming (‘92-03) cut Asian rice yields by 10+%/°C.

Warming (‘82-98) in 618+ US counties cutcorn & soybean yields 17%/°C.

With more CO2, 2°C warming cut yields 8-38% for irrigated wheat in India.

Warmer nights (‘79-’04) cutrice yield growth 10%± in 6 Asian nations.

Warming (‘80-’08) cutwheat yield growth 5.5%, corn 3.8%.

Crop yields rise with some warming, but fall with more warming.

Warming helps crops in cool areas, but hurts in the tropics.

For 1°C warming, with no change in weeds or pests, in general

US corn yields fall 8%, rice 10%, wheat 5-7%, soybeans 3%.

Add CO2(440 ppm) fertilization and irrigate.

US corn & rice yields fall 2%, wheat rises 2%, soybeans 5-9%.

But weeds and pests also grow better with warming & more CO2.

For wheat, corn & rice, photosynthesis in leaves

slows a lot above 95°F and stops above 104°F [40°C].

Tropical areas suffer most:

, if POSSIBLE (not too costly).

e.g., irrigated rice yields can fall 30% by the Ganges.

Crop response graphs

Crop Response Graphs .

Yields rise with more CO2

at 1st, but then nitrogen limits kick in.
















sum. by





Pine Bluff



Mean June Temps, ‘81-’10


study CO2 levels = 330

(‘72) to 380 ppm (‘06).

Nitrogen & water

not constraining.

Paleo-climate records show 6°C warming, long-term, for “2 x CO2”(560 ppm).







Pine Bluff



Pine Bluff





Mean June Temps

Mean June Temps

Nitrogen & water not constraining.

Yields rise 17% for KS soy, but fall 15% for IA corn, 13% for AR rice, 4% for ND wheat,

& 47% for rice in Kolkata.

But water tables are falling now, fast.

It will get worse.

Heat spikes devastate crop yields

Heat Spikes Devastate Crop Yields

Heat Spikes Devastate Crop Yields

Schlenker & Roberts 2009 .

Based on 55 years of crop data from most US counties, and

holding current growing regions fixed,

average yields for corn and soybeans could

plunge 37-46%by 2100 with the slowest (#1) warming

and plummet 75-82%with quicker (#2) warming.


Corn and soybean yields rise with daily highs up to 29-30°C [84-86°F],

but fall more steeply with higher temperatures.

Heat spikes on individual days haveBIG impacts.

Other crop future models use average temperatures.

Thus they miss heat spikes on or within individual days.

More rain can lessen losses. Plants transpire more water to cool off.

Growing other crops, or growing crops farther north, can help too.

World grain production

World Grain Production .

80% of human food comes from grains.

World grain production rose little from 1992 to 2006.

Production per capita fell from 343 kilograms in 1985 to 306 in 2006.

UN Food & Agriculture Organization

Worldwatch Institute 2006

World grain stocks

World Grain Stocks .

Any future food production increases will occur away from the tropics.

In the tropics, food production will fall.

Soil erosion continues. Water to irrigate crops will grow scarcer, as glaciers and snowpacks vanish, water tablesfall, and rainfall becomes more variable.

Satellites show that, since1994, hotdrysummersoutweighwarm, wet springs.

A world that was turning greener is now turning browner.

Grainstocks (below) are at low levels.

FAO: Crop Prospects and Food Situation

Farm adaptations to drought

Farm Adaptations to Drought

Plant more drought-resistant crops.

Plant smarter, like System for Rice Intensification.

the roots cuts fertilizer & pests, raises yields & drought tolerance.

Plant crops that rebuild soil carbon.

Use much more drip irrigation.

Cover reservoirs and irrigation canals to slow evaporation.

Plant more wheat, less rice. Rice is water-hungry.

Go North, young man!

Mexicans to the US,

Pakistanis to Britain, Algerians to France, Turks to Germany

Chinese to Siberia,

Colonize Greenland.

With less food, feed fewer animals. Eat less meat.

More space between

Suck CO2 out of the air.

Americans to Canada,

Arabs to Russia,

Food price index

Food Price Index .

Poor people could not afford to buy enough food in 2007-8. .

Malnutrition & starvation rose. Food riots toppled governments in 2011.

and 2010.

With food stocks at low levels, food prices rose steeply in 2007-8

2002-04 = 100

UN, Food & Agriculture Organization: World Food Situation / FAO News

Ditto 2010-11.

World food prices

World Food Prices .

Over 2005-7, .

world prices .

rose 125% .

for wheat, .

100% for corn, .

27% for rice.+.

soybeans 83%.

in just 1 year..

Look at 2008..

Over 2006-7, .

food prices rose .

18% in China, .


& Pakistan, .

10+% in India, .

Russia & .

Latin America. .

Over 2007-8, world food prices rose20-150%..

In the US, food prices rose too: whole wheat bread 12%, milk 29%, eggs 36%.


Grain for ethanol,

High oil prices

UN: Food & Agriculture Organization











more meat for China,

droughts in Australia, Ukraine, Russia

,devalued $.

mean more $ for fertilizer & pesticides, & especially to fuel pumps & tractors.

Deserts are already spreading

Deserts Are Already Spreading.

50 Year Trend in Palmer Drought Severity Index, 1950-2002

The Sahara Desert is spreading south, into Darfur & the Sahel. .

The Gobi Desert is spreading into northeast China. More sandstorms visit Beijing.

Retreating glaciers moisten the soil in Tibet..











-180 -120 -60 0 60 120 180

Fig. 7 in Dai,

Trenberth & Qian,

Journal of


Dec. 2004

-6.0-4.0-2.0 0.0 +2.0 +4.0 +6.0

More negative is drier. More positive is wetter.

See Spain, Italy, Greece.

The USA lucked out till 2007.

2 vs 4 warming

emissions continue.

2° vs 4° Warming .

1.1°C warming is here.

2°C warming is unavoidable, but it is manageable.

Holding warming to 2°C, not 4C°, prevents these losses:

3/4 of Gross World Product

$42 Trillion ~ 3/4 of GWP

1/5 of theWorld’s Food .

2/3 of Amazon Rainforest

1/8of the world’s oxygen supply

Gulf Stream +

West Antarctic Icecap .

Florida & Louisiana, central CA, Long Island, Cape Cod

1/2 ofall Species .

4°Cwarming threatens civilization itself.

Details to follow: first 2°C, next 3°C, then 4°C, finally 5°C.

0.6°C more is in the pipeline.


- Norfolk area, much of

5°Cis worse.

2 c warming 450 ppm co 2 e

2°C Warming - 450 ppm CO2e*..

(Waxman-Markeybill or Kerry-Boxerbill in Congress) .

Stern Review, British government, Oct. 2006 .

(a report by scores of scientists, headed by World Bank’s chief economist) .

selected effects - unavoidable damages.

Hurricane costs double.

Major heat waves are common.

Droughts intensify.

Civil wars & border wars over water increase:

Crop yieldsrisenowhere

Greenland icecap collapsebecomes irreversible.

If we play it right, melting takes 3,000 years.

The ocean begins its invasion of Bangladesh.

It lasts for centuries. We choose now how fast and how far.

* also includes

CH4, O3, SO4, etc.

Many more major floods

Forestfires worsen.

Deserts spread.

more Darfur’s.

CNA Corp. – 11 retired US Generals & Admirals, April 2007

& fall in the tropics.

If we play it wrong, 400 years.

3 c warming 550 ppm co 2 e

3°C Warming - 550 ppm CO2e

(McCain-Lieberman bill, watered down)

additional damages – avoidable

Droughts & hurricanes get much worse.

Hydropower and irrigation decline.

Crop yieldsfallsubstantiallyin many areas.

More water wars & failed states.


Tropical diseases (malaria, etc.) spread farther and faster.

15-50%of species face extinction.

Stern Review & CNA Corp.

Water is scarce.

Terrorists multiply.

Cox ‘00, Cook ‘08, Harris ‘08

Lyme disease, West Nile virus too. Etc.

4 c warming 650 ppm co 2 e

.4°C Warming - 650 ppm CO2e..

(double pre-industrial levels)

(Bush proposal)

further damages - avoidable

•Water shortages afflict almost all people.

Crop yieldsfallinALLregions, by1/3inmany.

Entire regions ceaseagriculturealtogether,

Water wars, refugee crises, & terrorism become intense.

This has begun: Somalia, Darfur, Rwanda, south Sudan, Mali, north Nigeria, Yemen….

Methane releasefrom permafrost accelerates.

The Gulf Stream may stop, monsoons sometimes fail.

“Gulf Stream” is shorthand for the world ocean thermohaline circulation, to which it’s connected.

West Antarctic ice sheet collapse speeds up.

Adios to Miami, New Orleans, Norfolk & Venice by 2100,

to Amsterdam, Shanghai, Canton, Kolkata, Saigon, Bangkok & Tampa by 2200.

Goodbye also to parts of New York, London & Washington, as seas creep higher.

Stern Review & CNA

e.g., Australia.

We played it wrong.

5 c warming

5°C Warming .

5°C Warming - 750 ppm CO2e

(Business as Usual Emissions) .

Deserts GROW by 2 x the size of the US.

Eventually, we’d gain US-sized polar forests

Much of southern Europe would look like the Sahara.

Agriculture would be destroyed and life would be impossible,

over much of the planet. Lord Stern, 2009

World food falls by 1/3 to 1/2.

The result? Extended conflict, social disruption, war essentially,

over much of the world, for many decades. Lord Stern, 2009

Human population falls .

to match the reduced food supply.

It won’t be pretty.

World War 2 killed 60 million

Other species fare worse.

The 6th Great Extinction has begun.

my extrapolations +

, but we’d lose as much to rising seas.

a lot,

For perspective,

, but worldwide, it did not reduce population.

The stakes

The Stakes .

The costs of failing to tackle the climate change issue would be greater than the impact of both World Wars and the Great Depression combined.

Once the damage from unchecked emissions growth is done, no retrospective global agreement, in some future period, can undo that choice.

British Prime Minister Gordon Brown

October 19, 2009




Costs ofInaction:

including $120 billion ($400 / American) in the US for 2012 .

Already 0.5 million / year die worldwide,.

$74 Trillion .

This exceeds GWP. .

a HUGE hiddenTAX:$50,000 / American

$85 / Ton of CO2


Costs ofAction:

Spend 1% of GWP ($150 billion by US), each year, ± 2%.

Damages fall to $25 - $30 / Ton of CO2.

World Savings ~ $2.5 Trillion, net from each year’s spending.

inflation-adjusted $, Business as Usual

Stern Review


Watkiss / Hope,

now $695 Billion/Year

(more than 1% of GWP),

(almost 1% of US GNP).

+4.5 million from coal sulfates.

Costs GROWover time.

: 2005-2200)

(present value

(2%/year discount rate)

annualized: $1.5 Trillion / year

$30-75 / year / American – CBO, EPA



Put way less carbon in the air.

Take carbon out of the air,

big time.

Take carbon out of the air

Take Carbon Outof the Air.

Perennial grass roots add carbon to soil.

Lots more rain soaks in.

(1-2 T / acre)

Reduce CO280 ppm.

1 Rebuild prairie grasslands.

Speed up process 10-100 x with short rotation cattle grazing, like buffalo.

Dung beetles move carbon underground.

Absorb carbon: 1+ oz / sqft / year.

2 Rocks have weathered for eons, taking 1 GT CO2 / yr from the air.

Move CO2 into crushed rock.

Spread around millions of 2-story towers with crushed rock.

3 Farm the oceans.

Add iron filings to select ocean areas.

Algae must suck 8 x as much carbon from the air as our food supply does,

just to break even.

Dead algae may not sink.

Additional fertilizers (K, P, N, etc.) may be needed.

4 Make biochar. Bury it in shallow pits.

Speed up natural process20-60 x.

Algae bloom, suck CO2 from the air.

even if fertilization works well.

Oceans may be too small,

soon carbon returns to air.

Tiny critters eat them;

Other problems will arise.

Take more carbon out of the air

It’s a good idea, but

deforestation continues

Take More Carbon Out of the Air.

Forest fires run wild.

humus, roots, fungi, bacteria, leaf litter.

Drought & fires hurt.

5Plant more trees.

- for lumber, paper, palm oil, soybeans, ranches, fuelwood. .

Trees need water, but soils will have less.

6Maintain forest soils:

Below-ground carbon ~ above-ground(20-50ºN).

(Permafrost holds 3-7 x as much carbon / acre as tropical rainforest.)

7Add silicates during hydrolysis at sea surface.

A Add Sulfates to the Stratosphere – to block sunlight.

We’d need a hundred flights every day to the stratosphere by big cargo planes.

They’d be only 1% of what we now put in the troposphere.

But it would shift rain from one region to another – drought in east Africa, etc.

B Mirrors in Space – to block sunlight

We’d need half a million square miles of mirrors now, twice the size of Texas.

Add that much in 30 years, and again in 50.

Even if the mirrors are as thin as Saran Wrap,

we’d need dozens of space shuttle-sized cargo launches every day this century.

C Create more clouds, or whiten them more.

Scrub CO2 from the air.


Smoke & Mirrors don’t slow acid in ocean.

Only $10 billion / year!

They drift outward – solar sails!

Co 2 emission paths to stabilization

CO2 Emission Paths to Stabilization .

Stern Review

CO2e (CO2 equivalent) includes warming from CO2 & other GHGs, less the cooling effect of sulfates.








The paths assumeNOemissionsfrompermafrostor seabedmethanehydrates.

We are already at 450 ppm CO2e (including 398 of CO2).

Holding eventual warming to 2°C may no longer be possible,

unless we take lots of CO2 out of the air.

450 ppm CO2e = 398 CO2 + 315 other GHGs - 263 sulfate cooling.

World co 2 emissions from fossil fuels 32 6 billion tons in 2011

World CO2 Emissionsfrom Fossil Fuels32.6 Billion Tons in 2011



Does not include CO2 .

from cement production. .

China had .24 billion tons, .

or 54% of the world total. .

In 2012, US fossil fuel CO2 came 42% from oil, 29% from coal, 29% from natural gas.

35% came from electricity, 33% from transportation, 17% from industry.

* Misc. = Korea, Indonesia, Thailand, Taiwan, Malaysia, Vietnam, Bangladesh, etc.

Co2 emissions by nation year

CO2 Emissionsfrom Fossil Fuels

CO2 Emissions by Nation, Year .

(Billion Metric Tons)


In 1992, Ukraine etc. to Europe,

Kazakhstan, etc. to Central Asia.

Mid-East &

Central Asia

Misc. Asia= .

Korea, Indonesia, Thailand, Bangladesh, Taiwan, Philippines, Malaysia, Vietnam, etc.

Other Asia

Misc. Asia





M-E & CA = Turkey to Pakistan & Kazakhstan




Latin America





Oceania =

Australia, NZ, etc.

Cumulative co 2 emissions 1 29 trillion tons

1900-2002 World Resources Institute

1980-2011 US Department of Energy - EIA

1950-1980 Oak Ridge National Lab

CO2People .

Rich Countries 62% 15% .

Russia, Mid-East+ 14% 8%.

Developing Countries 25%77% .


Poor .

nations .

believe .

rich .

countries .

created .



so .

let .


fix .

it! ....




In late 2009, Chinapledged tocutits CO2 intensity 40-45% by 2020, India 20-25%.

for the 1st time,China’selectricity fromwindgrewmore (26 TWh)than from coal (12 TWh). .

China in 2013 uses carbon cap & trade around Shenzen, Shanghai, Beijing & Guangzhou. It will in

2014 around Wuhan, Tianjin & Chongqing too.

CumulativeCO2 Emissions1.29 Trillion Tons


In 2012,

China now plans a CO2 emissions peak in 2026.

America s low carbon revolution has begun

America’s Low-Carbon Revolution Has Begun



Net Imports



Companies are set to cash in on green technologies

Companies are set to cash in on greentechnologies.

For example, .

GE WindPhilips Electronics (CFL lighting)

Evergreen Solar (PV cells)Archer Daniels Midland (ethanol & biodiesel)

Entergy (nuclear plants)Johnson Controls (energy management systems)

Bechtel (IGCC coal plants)Magna International (lightweight auto parts)

Wheelabrator (landfill gas)Southwestern Energy (natural gas)

Halma (detect water leaks)Veolia Environnement (desalinization plants).

PV = photovoltaic. IGCC = integrated gasified combined cycle, helps sequester CO2. CFL = compact fluorescent light.

Meanwhile, the insurance industry has begun to act.

•Re-insurers – Lloyd’s of London, Swiss Re, and Munich Re –

look to cut theirlosses by urging governments to mitigate climate change.

•Direct insurers – like Allstate, State Farm, MetLife, Hartford –

are cutting back coverage in vulnerable areas, such as Florida.

•Nebraska insurance commissioners require planning for drought risk.

Large investors (> $20 Trillion in managed assets) have pushed 100+ companies

to disclose their climate-relatedrisks to shareholders.

The market values high-carbon emitting companies lower.

Carbon disclosure raises stock prices.

ExxonMobil is #1 target.

Us co 2 emissions by use

US CO2 Emissions, by Use .

US CO2 Emissions

by Use







2012: USDOE - EIA

(US Department of Energy -

Energy Information Administration)

Concentrate on the BIG stuff: coal for electricity

(with a carbon cap)&personal transportation.

Us electricity by source yr

US Electricity, by Source & Yr .









Natural Gas


Other Gases



Natural Gas and Wind replace Coal and Oil.

The us is cutting co 2 emissions

The US Is Cutting CO2 Emissions.

Natural gas prices fell steeply from August 2011 to May 2012.

Cheaper gas replaced coal - a lot - to make electricity.

EPA’s interstate transportrule* for SOx and NOx will make

coal plants operate scrubbers more and use low-sulfur coal.

This makes coal power costlier, so less coal will be used.

EPA will soon createrules limiting CO2/kWh

from new and existing power plants.

Financial markets expect CO2 to be priced.

Most proposed coal plants have been cancelled.

Since 2009, 13% of coal capacity has been scheduled to retire.

New cars & trucks must average 35.5 mpg by 2016

and 54.5 mpg by 2025.**

Hundreds of big companies save money by saving energy.

Incandescent light bulbs began phasing out in 2012.

New standards require ever more efficient appliances.

  • on appeal at

  • Supreme Court

** DOE’s mpg, not EPA’s.

So, actual mpg will be less.

Solutions electricity

Solutions - Electricity

•Price it right


Natural Gas & Oil follow loads up & down all day, but oil is expensive.

follow loads:

Keep methane (& chemicals to groundwater) leakage from fracking to very low levels.

Wind- Resource is many x total use:

Growing 16-35%/year,

Wind turbines off the East Coast could replace all or most US coal plants.

Over 2004-10, US coal capacity grew 4 GW, while wind capacity rose 33 GW.

Solar -Resource dwarfs total use.

Growing 30+%/yr.

Nuclear -new plants in China, India, US Southeast.

Water, Wood, Waste - Rivers will dwindle. More forestfires limit growth.

Geothermal-big potential in US West, Ring of Fire, Italy.

Renewable energy can easily provide 80-90% of US electricity by 2050.

retail, for everyone:

low at night, high by day, highest on hot afternoons.

Use less.

Scrub out the CO2 with oxyfuel or pre-/post-combustion process.


car batteries, water uphill, compressed air, flywheels,hydrogen.

store energy in

US Plains, NC-ME & TXcoasts, Great Lakes.

it’s now cheaper than coal in many places.

5.6% of US GW

Output peaks near when cooling needs peak.

PV costs 6-25 ¢/kWh, thermal (with flat mirrors) 10¢.

NREL, 2012

Solutions personal vehicles

Solutions - Personal Vehicles

US cars get 24mpg. 7

Average 20.

GM and Chrysler went bankrupt.

Toyota started outsellingFord in the US & GM around the world.


New cars average 37-44 mpg in Europe, 45 in Japan.

To cut US vehicle CO2 by 50% in 20 years is not hard. .

GMalready did it in Europe. .

Lighten up,downsize,don’t over-power engines..

Use 5-speeds & CVTs,hybrid-electric, diesel. .

Use pickup trucks & vans only for workthat requires them. .

Store wind on the road, with plug-in hybrids.

Pickups, vans& SUVs get 17.

up to 56 mpg.


Ditch SUVs.

Charge them up at night.

Solutions other transportation

Solutions - Other Transportation

Fuels - Cut CO2 emissions further with low-carbon fuels?

Save ethanol & biodiesel for boats & long-haul trucks & buses.

Get ethanol from sugar cane

cornethanol’s ratio is only 0.8 or 1.3 or 1.7:1.

Grain for ethanol to fill one SUV tank could feed a man for a year.

Palm oil& prairie grassenergy out / in = 0.7:1, up to 6:1.

For biofuels, GHGs from land usechanges DWARF GHG savings.

Hydrogenhas low energy density, is hazardous.

Trains, Planes, and Ships

Use high-speed magnetic levitatedrailroads (RRs) for passengers.

Shift medium-haul (150 - 800 miles) passengers from

airplanes to maglevRRs (faster than TGV, bullet trains).

Shift long distance freight from trucks to electricRRs.

Big cargo ships use 2 MW wind turbines, hydrogen, nuclear reactors.

(energy out / in ratio = 8:1).

Use cellulose?


Better microbes?

Limit to ships, airplanes.

Solutions efficient buildings

Solutions -Efficient Buildings +

At Home-Use ground source heat pumps.

Better lights -compact fluorescents(CFLs) & LEDs.

Energy Star appliances

Insulation- high R-value inwalls & ceiling,

Low flow showerheads, microwave ovens,trees,awnings, clotheslines,solar roofs

Commercial -Use micro cogeneration, ground source heat pumps.

Don’t over-light.

Use LCDEnergy Starcomputers.

Usefree cooling (open intakes to night air),green roofs,solar roofs.

Make ice at night. Melt it during the day

Industrial- Energy $ impact the bottom line.

Efficiency is generally good already.

Case-specific process changes as energy prices rise.

Turn off un-used lights.

  • - air conditioners, refrigerators, front load clothes washers

honeycomb windowshades,caulking

Use day-lighting,occupancy sensors, reflectors.

Ventilate more withVariable Speed Drives.

- for cold water to cool buildings.

Check % IRRs.

Facilityenergy managersdo their jobs.

Use morecogeneration.

Solutions personal

Solutions - Personal

Makeyourhome & office efficient.

Drivean efficient car.

Don’tdrive much over55 mph.


Buy thingsthatlast.



Reduce, re-use, recycle.

Ask Congress to price carbon.

Don’t over-size a house.

Don’t super size a vehicle.

Combine errands, idle 10 seconds tops.


Use bus,RR, subway.

Fix them when they break.

Less ishealthier!

1 calorie = 7-10 of grain.

Move carbon from the air into the soil.

Use cloth bags.

Minimize packaging.

Cut CO2 emissions 80+% by 2050.


Tax carbon 2¢/lb, rising over 20 years to 4¢/lb.

Enact incentives totake CO2OUT of the air.



ContactDr. Gene Fry

for more details, citations & references.

[email protected]

Mini references


•Jet stream’s big meanders now - Petoukhov‘13. CO2 levels: 1958-2005 - Keeling et al., ‘05; 1740-1960 - IPCC

•GHGs &% effect: IPCC; Sulfur 45%: IPCC ‘07 chart

warming H2O un-dissolves CO2: HS chem text. -15M years CO2,°F,sea level: Tripati ‘09; 3-5 yra: Csank ‘11,Dwyer ‘08.

Solar output: Cloud feedback: Clement ‘09.

380 million MW heat gain = area of Earth x 0.75 W/m2 - Hansen ‘11. 0.6°C “in the pipeline” - Hansen ‘05

Temperature rise: NASA GISS: UCS study:

Ocean heat: Domingues ‘08 (+1.8x1023J, 0-700m,‘70-’06); Lyman ‘10 (+1.5); Levitus ‘08 (+1.6). 1020J/yr US,  2x1022.

Ocean acid: Wikipedia.Corals: Himalayas: Powell, Science News 0812.polar icecaps: Rignot ‘06 etc.,NOAA ‘12

Arctic Ocean ice volume: Wipneus ‘12, area Albedo Wadhams ‘12. Antarctic, Greenland ice Shepherd ‘12

Sea level rise: Summerhayes ‘09, NRC ‘10, NOAA ‘12. Permafrost: 4-5 x human: Zimov ‘06; shrank7%: IPCC ‘07;

rate ~ cars: Dorrepaal ‘09; to 2100, Schuur ‘12; & to 2300 MacDougall ‘12;CH4 hydrates: wikipedia,Shakhova ‘10.

Antarctic: now Wadham ‘12, PETM DeConto ‘12; Ocean CO2 -7 & 50%: Behrenfeld ‘06, Schuster ‘07, Lee ‘09, Watson ‘07

Subtropical arid belts moved ~140 miles: Seidel ‘07; Reichler ‘06. Severe drought cut CO2 uptake: Jacobson ‘07.

Forest fires up 6 x since 1986: US - Westerling ‘06 Siberia - Soja ‘07, Canada - Stock ‘06. Up 2x by 2050: Morton ‘12.

Falling water tables, vanishing lakes & rivers: Lester Brown, Plan B, ‘06. China deserts +50%: Globe & Mail, 3/6/08

Ocean pH - Turley ‘05. Land & sea carbon sinks fade - Jacobson, Potter, Wiedinmyer, Canadel, Le Quere - all ‘07

33% > H2O in air at = relative humidity - Rind ‘90. 10% > rain offsets +1°C - M. Parry ‘05 & Lester Brown.

Tree biomass falls 40%: Overpeck & Bartlein, ‘89 (in Rind ‘90). Simulation: species not allowed to migrate north.

Net biological productivity falls 30-70%: Rind et al.‘90. Browning of Earth began in 1994: Fung, ‘05.

Crop yields could fall 30-50% - Peart et al., Ritchie et al., Rosenzweig et al., all ‘89 (in Rind et al., ‘90)

CO2 fertilization, greenhouses: Wittwer ‘92, Idso ‘01; open fields: Idso ‘02, Kimball ‘02. Groundwater USGS ‘13.

Crop yields fall 10%/°C rise: Peng ‘03; 17%/°C (618 US counties) Lobell ‘03; Asia rice: Welch ‘10; wheat, corn: Lobell ‘11

Overview of crop yields fall per °C rise: Hatfield ‘11. Photosynthesis 35° slow, 40° stop: Wali ‘99.

Grain: production - FAO, Worldwatch Institute; use - Climate Change Futures: Swiss Re & Harvard S Public Health

Food price rises: FAO, Brown (EPI) ‘08, Chicago Board of Trade

Damages, 2°-4°C: Stern Review ‘06. $1.6 T/yr - DARA ‘12; $74 T (PV) - Watkiss ‘06; $20 & 85/T CO2 - Stern Review ‘06

Mirrors & sulfates block sun: Wikipedia & back of envelope. Iron in ocean, e.g., Planktos Inc. (

Carbon reduction costs - Stern Review ‘06. Green Companies - Smith Barney/Citigroup ‘07, 08; CERES ‘05, 06

Coal oxyfuel process, 100 years of emissions storable underground - Metz et al. (IPCC) ‘05; Herzog, MIT, ‘06

13% coal retirements: US wind MW & kWh % - USDOE-EIA. Wind & solar growth %/yr: USDOE

Average mpg’s - USDOE EIA (Monthly Energy Review, Table 1.9). Hydrogen cars - Spessard ‘06.

Ethanol: energy out: Pimentel ‘05, Shapouri ‘04; SUV / food: Brown ‘07; Land use: Searchinger, Fargione ‘08.

Taking Carbon Out of the Air: 1)prairie soils:; 2) a)trees & forest soils & b) rock: Spring ‘08: a) giving trees & b) mad scientist; 3) smokestack to products:

  • Login