1 / 44

Pionic Deuterium

Pionic Deuterium. | Thomas Strauch for the Pionic Hydrogen collaboration. Experimental program of the Pionic Hydrogen collaboration. Pionic Hydrogen R-98.01 ECRIT (response function) Muonic Hydrogen Pionic Deuterium R-06.03. Exotic atoms. Bohr radius:.

kaiyo
Download Presentation

Pionic Deuterium

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pionic Deuterium | Thomas Strauch for the Pionic Hydrogen collaboration

  2. Experimental program of the Pionic Hydrogen collaboration • Pionic Hydrogen R-98.01 • ECRIT (response function) • Muonic Hydrogen • Pionic Deuterium R-06.03

  3. Exotic atoms Bohr radius:

  4. Atomic cascade of pionic deuterium • Hadronic interaction • shift ε1s ≈ - 2,5 eV • width Γ1s ≈ 1,2 eV • Aim: • 1s /1s 1s /1s • 3% ~ 1% 12% ~ 4% D(3p - 1s) 3 keV Deser:

  5. Pionic Deuterium Width Γ1s~ Im aπD directly related to pionproduction at threshold charge symmetry detailed-balance threshold parameter α (s-wave production)

  6. Pion-Nucleon Interaction • Isospin 1/2 or 3/2 system • At threshold: two parameters: • s-wave scattering lengths a1/2und a3/2 • choose isoscalar und isovector scattering lengths a+ und a- :

  7. Pionic Hydrogen • 1s : • 1s : Pionic Deuterium • 1s : + NLO(~LO) NLO: a- appears + NLO(%)

  8. N isospin scattering lengths bandwidth mainly by LEC f1 bandwidth mainly by LEC f1 J.Gasser et al.: Hadronic atoms in QCD+QED Physics Reports 456(2008)167-251 Pionic Deuterium: bandwidth mainly by experiment Constraint for N isospin scattering lengths a & a –

  9. Experimental setup High-resolution Bragg crystal-spectrometer Bragg law:

  10. Experimental setup spherically bent Bragg crystal bending radius ~ 3m large area detector 6 CCDs with 600x600 pixel pixelsize 40x40 µm cyclotron trap superconducting magnets cryogenic target N. Nelms et al., Nucl. Instr. Meth 484 (2002) 419 L. M. Simons, Hyperfine Interactions 81 (1993) 253

  11. Experimental setup Precision measurement: → low background → concrete shielding

  12. Measurement Hit pattern on CCD detector ADC-spectrum Hit pattern after curvature correction Cluster analysis

  13. Measurement Spectrum after cluster analysis, ADC cuts, curvature correction, projection onto x-axis rate: ≈ 30/h • high-statistics measurement • of πD(3p-1s) earlier measurement without concrete with concrete

  14. Molecular formation • (d)nl + D2 → [(dd)d]ee • radiative deexcitation out of these formations would falsify the extracted shift ε1s • → density dependence • not seen in H, but predicted to be larger in D

  15. Energy calibration reflection in 1st order Ga K19257.67  0.066 eV K29224.84  0.027 eV reflection in 3rd order Deslattes et al.: X-ray transition energies, Rev. of Mod. Phys., Vol 75, Jan 2003

  16. stability with Ga Kα2 whole measure-time : 4 weeks ΔE ≈ ±2,5 meV

  17. Results | transition energies • corrections: • e.g. index of refraction (3keV / 9keV) • crystal bending • penetration depth… no evidence for radiative de-excitation out of molecular formations ε1s = Eexp. - EQED EQED = 3077.909±0.008 eV P.Indelicato private communication

  18. Results | shift ε1s ±0.002 QED calculation ±0.007 pionmass dominant

  19. Comparison to earlier measurements

  20. Extraction of the hadronic width from the line shape spectrometer response-function Doppler- broadening Lorentzfunction of transition

  21. Spectrometer response function (RF) • RF = Rocking curve Geometry add. Gauss Energy resolution: ΔE = 436 ± 3 meV ECRIT- measurement with He-likeAr

  22. Doppler broadening • energy release of Coulomb transitions converted into kinetic energy of the πD-atoms prediction cascade-theory, scaled from πH

  23. Doppler broadening • kinetic energy distribution:approximation by „boxes“ prediction cascade-theory, scaled from πH

  24. χ2 analysis • free fit one box two boxes low energy box essential no evidence for high energy contribution

  25. Statistical studies | MC-simulations intensity input of high energy contribution: 10% : red 25% : blue probability to miss a simulated contribution

  26. statistical error determination

  27. Results | Width Γ1s • →only one Low-energy-component identified, • no high-energetic parts • →numerous MC-simulations to determine systematic errors

  28. Comparison to earlier measurements

  29. 1s = - 2325  31 meV ( ±3% → ±1,3%) • 1s = 1171 meV (±12% → %) Pionic Deuterium | Final results + 23 - 49 + 2,1 - 4,2

  30. +5 -11 α = 252 μb threshold parameter α χPT: expected uncertainty 30% → 5% NNLO calculations

  31. Thank you for your attention! • Debrecen – Coimbra – Ioannina – Jülich – Paris – PSI – Vienna • PSI experiments R-98.01 and R-06.03 • D. F. Anagnostopoulos, S. Biri, D. D. S. Covita, H. Gorke, D. Gotta, A. Gruber, M. Hennebach, • A. Hirtl, P. Indelicato, T. Ishiwatari, Th. Jensen, E.-O. Le Bigot, J. Marton, M. Nekipelov, • J. M. F. dos Santos, S. Schlesser, Ph. Schmid, L. M. Simons, Th. Strauch, M. Trassinelli, • J. F. C. A. Veloso, J. Zmeskal PIONIC HYDROGEN collaboration

  32. Pionisches Deuterium • Appendix

  33. cascaden effects

  34. Origin of shift and width

  35. Pionic Deuterium • 1sPionproduktion an der Schwelle NN  NN Panofsky Rate: Pd = 2.83±0.04 Atom: und über optisches Theorem mit Wirkungsquerschnitt verknüpft Ladungssymmetrie Zeitumkehr-Invarianz Pionproduktion Parametrisierung:

  36. Elastic scattering

  37. Experimental setup

  38. long range stability results analysis inclination sensor data evolution of crystal temperature

  39. corrections and error for ε1s

  40. Spectrometer responsefunction Electron Cyclotron Resonance Ion Trap ( ECRIT ) ECRIT= cyclotron trap (4) + hexapole magnet (2) + high frquency (5) 6.4 GHz 450 W D. Hitz et al., Rev. Sci. Instr., 71 (2000) 1116 • He-like atoms • narrow X-rays, few keV • high rate • S  H(2p-1s) • Cl  H(3p-1s) • Ar  H(4p-1s) • D(3p-1s) CCD detector D.F.Anagnostopoulos et al., Nucl. Instr. Meth. B 205 (2003) 9 D.F.Anagnostopoulos et al., Nucl. Instr. Meth. A 545 (2005) 217

  41. Kinetic energy → velocity distribution

  42. charge symmetry detailled balance D atom  production extrapolation to threshold J. Hüfner, Phys. Rep. 21 (1975) 1 Appendices | NN threshold parameter  PT at present/  30%  few % NLO  [b] LO V. Lensky et al., nucl-th/0511054,2005

  43. + Coulomb corrections Formulae D U.-G. Meißner, U. Raha, A. Rusetsky, Phys. Lett.B 639 (2006) 478

  44. d fromD 1s fromH 1s D wave function Deser formula + Coulomb corrections Single + multiple scattering

More Related