Slide1 l.jpg
This presentation is the property of its rightful owner.
Sponsored Links
1 / 40

بسمه تعالی PowerPoint PPT Presentation


  • 276 Views
  • Uploaded on
  • Presentation posted in: General

بسمه تعالی. Cytoplasm. Cytoplasmic area Cytoplasmic membrane invagination Meny bacteria specially G+ Mesosmes Central mesosomes DNA Peripheral mesosomes Transport of extra cellular enzyme (penicillinase) Thylakoid. Cytoplasm. Cytoplasmic area 1- ribosom Free Bound to cytoplasm

Download Presentation

بسمه تعالی

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Slide1 l.jpg

بسمه تعالی


Cytoplasm l.jpg

Cytoplasm

  • Cytoplasmic area

  • Cytoplasmic membrane invagination

  • Meny bacteria specially G+

    • Mesosmes

      • Central mesosomes

        • DNA

      • Peripheral mesosomes

        • Transport of extra cellular enzyme (penicillinase)

  • Thylakoid


Cytoplasm3 l.jpg

Cytoplasm

  • Cytoplasmic area

  • 1- ribosom

    • Free

    • Bound to cytoplasm

  • Chromatinic area

    • DNA rich

  • Fluid area

  • granules


Slide4 l.jpg

Inclusion Bodies

Periplasmic

Cytoplasmic

http://web.mit.edu/king-lab/www/research/Scott/Scott-Research.html


Inclusions l.jpg

Inclusions

Inclusions are aggregates of various compounds that are normally involved in storing energy reserves or building blocks for the cell. Inclusions accumilate when a cell is grown in the presence of excess nutrients and they are often observed under laboratory conditions.


Slide6 l.jpg

  • Inclusion bodies (for storage)

    • Granules make up of organic or inorganic substances

    • Often visible using light microscopy

    • Can be bound or unbound by membrane


Slide7 l.jpg

Storage materials and inclusions

  • Carbon-storage polymers

    • Poly--OH-alcanoate (PHA)

    • Poly--OH-butyrate (PHB)- lipid

    • Glycogen, Starch (alfa 1-4 glucose linkages)

  • Polyphosphate

  • Sulfur

  • Cyanophycin , (nitrogen polymer in cyanobacteria)

  • Magnetite (Fe3O4 )

  • Gas vesicles (membrane structures found in a wide diversity of microbes, many aquatic microbes for buoyancy)

  • Gas diffuses freely across the membrane


Slide8 l.jpg

  • Examples

    • Glycogen (glucose polymers) – C source

    • Poly beta hydroxybutyrate (PHB) – C source

    • Cyanophycin granules (Arg + Asp in 1:1 ratio) – N source

    • Carboxysomes - CO2 fixation

    • Gas vacuole – buoyancy

    • Polyphosphate granules (volutin granules, aka metachromatic granules) – phosphate source

    • Sulfur granules (e.g. Thiobacillus spp.) – S source


Slide9 l.jpg

  • Magnetosomes

    • Inclusion body used for purpose other than storage

    • Bacteria use magnetosomes to orient in the earth’s magnetic field


Slide10 l.jpg

Poly-beta-hydroxyalkanoate (PHA)One of the more common storage inclusions is PHA. It is a long polymer of repeating hydrophobic units that can have various carbon chains attached to them. The most common form of this class of polymers is poly-beta-hydroxybutyrate that has a methyl group as the side chain to the molecule. Some PHA polymers have plastic like qualities and there is some interest in exploiting them as a form of biodegradable plastic. The function of PHA in bacteria is as a carbon and energy storage product. Just as we store fat, bacteriastore PHA


Poly beta hydroxybutyrate l.jpg

Poly-beta-hydroxybutyrate

Another polymer often found in aerobic bacteria especially under high-carbon, low nitrogen culture condition, is a chloroform-soluble, lipidlike material, PHB

Serve as a reserve carbon and energy source.

PHB can be stain with lipid-soluble dyes such as Nile blue.


Slide12 l.jpg

  • Poly –B –hydroxy butyrate granules. (PHB)

  • دانه هاي PHB مخازن تركيبات Lipid بوده كه توسط بعضي از باكتريها مانند Cyanobacteria جمع مي شوند.آنها همچنين درسلولهاي اسپور نوع Cl. botulinum B, E نيز ديده شده اند.دانه هاي PHB به مانند مخازن كربن وانرژي ويا انرژي تنها عمل مي كند زماني كه ميزان كربن ويا انرژي درمحيط زياد مي شود آنها تا 50% وزن خشك سلول مي رسند.


Slide13 l.jpg

  • Glycogen

  • Glycogen is another common carbon and energy stroage product. Humans also synthesize and utilize glycogen. Glycogen is a polymer of repeating glucose units.

  • گلوكز بوسيله تعدادي از باكتريها نگه داري مي شود كه بفرم پلي مر بنامglycogen مي باشند وآنها تحت شرايط خاص كربن زيادي (كمبود بعضي از مواد غذايي مانند كمبود نيتروژن) به فرم گليكوژن جمع مي نمايد دربسياري ازباكتريها توسط يك غشاء دربرگرفته مي شود و تشكيل يك inclusion را مي دهند.

  • اين گليكوژن هيدروليز شده وتبديل به گلوكز مي شود زماني كه مواد غذايي در دسترس باشد.


Phosphate and sulfur globules l.jpg

Phosphate and sulfur globules

Many organisms will accumilate granules of polyphosphate, since this is a limiting nutrient in the environment. The globules are longs chains of phosphate. Photosynthetic bacteria that do not evolve oxygen will often use sulfides as their source of electrons, some of them accumilating sulfur globules. These globules may later be further oxidized and disapper if the sulfide pool dries up


Gas vesicles l.jpg

Gas vesicles


Gas vesicles16 l.jpg

Gas vesicles

  • Gas vesicles are the exception to the rule that all bacterial cells have one contiguous membrane. Gas vesicles are found in Cyanobacteria, which are photosynthetic and live in aquatic systems. In these lakes and oceans, the Cyanonbacteria want to control their position in the water column to obtain the optimum amount of light and nutrients.


Gas vesicles17 l.jpg

Gas vesicles

  • Structure

  • Gas vesicles are aggregates of hollow cylindrical structures composed of rigid proteins. They are impermeable to water, but permeable to gas. The amount of gas in the vacuole is under the control of the microorganism.


Gas vesicles18 l.jpg

Gas vesicles

  • Function

  • Gas vesicles regulate the buoancy of the microbes by changing the amount of gas contained within them.

  • Release of gas from the vesicle causes the bacteria to fall in the water column, while filling the vesicle with gas increases their height in the water


Gas vesicles19 l.jpg

Gas vesicles

  • تقريباً تمام باكتريهايي كه داراي gas vesicle هستند

    • آبزي مي باشند

    • تعداد كمي فلاژلا دارند.

      • ارگانيسم هاي آبي كه داراي وزيكولهاي گازي نمي باشند داراي فلاژلا هستند.

  • لذا اين ميكروارگانيسم هاي آبي قادرند خودشان را براساس Chemical gradient به سمت مواد رفته ويا دور شوند.


Other inclusion bodies l.jpg

Other Inclusion Bodies

  • Cyanobacteria contain large inclusion bodies calledcyanophycin granules that store nitrogen for the bacteria.

  • Cyanobacteria, thiobacilli, and nitrifying bacteria, organisms that reduce CO2 in order to produce carbohydrates, possess carboxysomes containing an enzyme used for CO2 fixation.


Other inclusion bodies21 l.jpg

Other Inclusion Bodies

  • Purple and green photosynthetic bacteria as well as some other aquatic bacteria contain gas vacuoles. These are aggregates of hollow protein cylinders called gas vesicles that are permeable to atmospheric gas, enabling the organism to regulate buoyancy.

  • Some bacteria produce inorganic inclusion bodies in their cytoplasm, including volutin granules that store phosphate, and sulfur granules that store sulfur.


Other inclusion bodies22 l.jpg

Other Inclusion Bodies

  • Some bacteria produce organic inclusion bodies containing either polyhydroxybutyrategranules or glycogen granules as an energy reserve.

  • Some motile aquatic bacteria are able to orient themselves by responding to the magnetic fields of the earth because they possess magnetosomes, membrane-bound crystals of magnetite or other iron-containing substances that function as tiny magnets.


Some inclusions in bacterial cells l.jpg

Some inclusions in bacterial cells


Staining of granules l.jpg

Staining of granules


Organelles used in bacterial photosynthesis l.jpg

Organelles Used in Bacterial Photosynthesis

  • There are three major groups of photosynthetic bacteria: cyanobacteria, purple bacteria, and green bacteria


Cyanobacteria l.jpg

cyanobacteria

The cyanobacteria carry out oxygenic photosynthesis, that is, they use water as an electron donor and generate oxygen during photosynthesis.The photosynthetic system is located in an extensive thylakoid membrane system that is lined with particles called phycobilisomes


Green bacteria l.jpg

green bacteria

  • The green bacteria carry out anoxygenic photosynthesis. They use reduced molecules such as H2, H2S, S, and organic molecules as an electron source and generate NADH and NADPH. The photosynthetic system is located in ellipoidal vesicles called chlorosomes that are independent of the cytoplasmic membrane.


Purple bacteria l.jpg

purple bacteria

  • The purple bacteria carry out anoxygenic photosynthesis. They use reduced molecules such as H2, H2S, S, and organic molecules as an electron source and generate NADH and NADPH. The photosynthetic system is located in spherical or lamellar membrane systems that are continuous with the cytoplasmic membrane


Slide32 l.jpg

  • Cyanobacteria contain large inclusion bodies called cyanophycin granules that store nitrogen for the bacteria.

  • Cyanobacteria, thiobacilli, and nitrifying bacteria, organisms that reduce CO2 in order to produce carbohydrates, possess carboxysomes containing an enzyme used for CO2 fixation.

  • Purple and green photosynthetic bacteria as well as some other aquatic bacteria contain gas vacuoles. These are aggregates of hollow protein cylinders called gas vesicles that are permeable to atmospheric gas, enabling the organism to regulate buoyancy.

  • Some bacteria produce inorganic inclusion bodies in their cytoplasm, including volutin granules that store phosphate, and sulfur granules that store sulfur.

  • Some bacteria produce organic inclusion bodies containing either polyhydroxybutyrategranules or glycogen granules as an energy reserve.

  • Some motile aquatic bacteria are able to orient themselves by responding to the magnetic fields of the earth because they possess magnetosomes, membrane-bound crystals of magnetite or other iron-containing substances that function as tiny magnets


Slide33 l.jpg

  • Inclusion bodies (for storage)

    • Granules make up of organic or inorganic substances

    • Often visible using light microscopy

    • Can be bound or unbound by membrane


Slide34 l.jpg

  • Magnetosomes

    • Inclusion body used for purpose other than storage

    • Bacteria use magnetosomes to orient in the earth’s magnetic field

    • Magnetite – iron (greigite and pyrite)


Slide35 l.jpg

  • granular inclusions or inclusion bodies - -storage polymers; often visualized by staining. Glycogen,

  • polyphosphate, poly-ß-hydroxybutyrate


Inclusion bodies found in some not all cells l.jpg

Inclusion bodies (found in some, not all, cells)

  • stored energy

    • poly-beta-hydroxybutyric acid (fatty material, very high energy). View PBHB granules in freeze-fracture electron micrograph.

    • glycogen (polysaccharide, made of glucose sugare; good energy source)

    • polyphosphate (used to store phosphate, often a limiting nutrient)

    • sulfur granules (common in some photosynthetic bacteria)

    • magnetosomes (common in magnetotactic bacteria); allow cells to orient to magnetic fields. View magnetosomes in cell.

  • gas vesicles

    • found in many photosynthetic bacteria and cyanobacteria

    • involved in flotation: form rigid air-filled sac

    • surrounded by rigid protein (not lipid) membrane. Impermeable to liquids, but permeable to gas


Slide37 l.jpg

  • Storage of materials

  • 1. Inclusion bodies of bacteria

  • Bacteria store chemicals under certain conditions. eg, increased carbon availability but not inadequate nitrogen-containing compounds for protein synthesis available.

  • Not separated by membranes & display differential solubility

    • Nutrient reserves synthesised by the cell: poly-beta-hydroxybutyrate (PHB)

    • Energy reserves: inorganic polyphosphates (volutin, metachromatic granules) for ATP synthesis; viewable after staining by light microscopy

    • Metabolic deposits: Sulfur deposited as a result of metabolism (photosynthetic bacteria)

  • 2. Membrane bound organelles in Eucarya

  • Endoplasmic reticulum

  • Golgi apparatus

  • Lysosomes

  • Microbodies

  • Vacuoles

  • Cytoskeletal network


Slide38 l.jpg

  • Examples

    • Glycogen (glucose polymers) – C source

    • Poly beta hydroxybutyrate (PHB) – C source

    • Cyanophycin granules (Arg + Asp in 1:1 ratio) – N source

    • Carboxysomes (contain RUBISCO) - CO2 fixation

    • Gas vacuole – buoyancy

    • Polyphosphate granules (volutin granules, aka metachromatic granules) – phosphate source

    • Sulfur granules (e.g. Thiobacillus spp.) – S source


Slide39 l.jpg

  • Bacteria containing magnetosomes migrate in waves following exposure to a magnetic field


Slide40 l.jpg

  • تقريباً تمام باكتريهايي كه داراي gas vesicle هستند آبزي مي باشند وتعداد كمي فلاژلا دارند.ارگانيسم هاي آبي كه داراي وزيكولهاي گازي نمي باشند داراي فلاژلا هستند.لذا اين ميكروارگانيسم هاي آبي قادرند خودشان را براساس Chemical gradient به سمت مواد رفته ويا دور شوند.

  • Glycogen granules.Polyphosphate granules

  • فسفات معدني دربعضي از باكتريها درطي حداكثر رشد درباكتريها جمع مي شود.اين فسفاتها تبديل به

  • Polyphosphate شده وتشكيل inclusion درسلول بنام metachromatic granule وهمچنين به نام Volutin يا Babes-Ernst bodies مي نامند. تنها عمل آنها ذخيره فسفر بوده كه درسنتز DNA ويا RNA استفاده مي تواند بشود.آنها مهم در تشخيص Corynebacteria مي باشند.

  • Sulfur granules.

  • بهضي ازباكتريها داراي سولفور گوگرد معدني به شكل inclosion مي باشند كه بوسيله لايه nonunite احاطه شده است(اعتقادي براين است كه Proteinaceous مي باشد)دانه هاي گوگرد بوسيله Beggiatoa غير فتوسنتزي درطي اكسيداسيون سولفيدهيدروژن توليد مي گردد.ونيز باكتريهاي ارغواني Purple مانند گونه هاي Chromatiurm . گوگردهاي داخل سلول مي توانند اكسيده شوند وبه سولفيت Sulfate تبديل گردند وتوليد انرژي نمايند زماني كه سولفيدهيدروژن كاهش يابد(بعنوان مبناء انرژي)


  • Login