Loading in 5 sec....

Excited state spatial distributions in a cold strontium gasPowerPoint Presentation

Excited state spatial distributions in a cold strontium gas

Download Presentation

Excited state spatial distributions in a cold strontium gas

Loading in 2 Seconds...

- 66 Views
- Uploaded on
- Presentation posted in: General

Excited state spatial distributions in a cold strontium gas

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Excited state spatial

distributions in a

cold strontium gas

Graham Lochead

Motivation and Rydberg physics

Experimental details

Rydberg spatial distributions

The strontium Rydberg project – April 2012

Eint > Epot,Ekin

Problem: Correlations make modelling difficult

Solution: Simulate in controlled environment

The strontium Rydberg project – April 2012

Need single site addressability

…

Need strong interactions

…Rydberg atoms

Weitenberg et al, Nature 471, 319–324 (2011)

The strontium Rydberg project – April 2012

High principal quantum number n

Ionization limit

n = 68

n = 67

n = 8

n = 66

n = 7

Properties

H~ 0.1 nm

n = 6

n = 5

n = 100~ 1 μm

The strontium Rydberg project – April 2012

Strong, controllable interactions

The strontium Rydberg project – April 2012

Interaction shift

Energy

Separation

One excitation per atom pair when

The strontium Rydberg project – April 2012

Saturation of

excitation

H. Schempp et al, Phys. Rev. Lett. 104, 173602 (2010)

CNOT gate

operation

L. Isenhower et al, Phys. Rev. Lett. 104, 010503 (2010)

The strontium Rydberg project – April 2012

The strontium Rydberg project – April 2012

Investigate excited state spatial distributions

Ground state

Excited state

Column

density

Position

T. Pohl et al, Phys. Rev. Lett. 104, 043002 (2010)

The strontium Rydberg project – April 2012

Zeeman slowed atomic beam

5 x 106 strontium atoms at ~5 mK

2 x 109 atoms/cm3

Rydberg laser locked using EIT

R. P. Abel et al, Appl. Phys. Lett. 94, 071107 (2009)

The strontium Rydberg project – April 2012

5sns(d)

Ions detected on MCP

Ions Rydberg atoms

Sub natural linewidth

Control mJ

λ2 = 413 nm

5s5p

λ1 = 461 nm

5s2

The strontium Rydberg project – April 2012

5s Sr+

e-

5pns(d)

λ3 = 408 nm

5s Sr+

5sns(d)

λ2 = 413 nm

5s5p

Resonant ionization

Independent of excitation

State selective

λ1 = 461 nm

5s2

J. Millen et al, Phys. Rev. Lett. 105, 213004 (2010)

The strontium Rydberg project – April 2012

The strontium Rydberg project – April 2012

Focus coupling beam as well

Scan one direction along ensemble

Ground state from camera image

The strontium Rydberg project – April 2012

Multiple slices → 2D spatial map

Ground state

Excited state

The strontium Rydberg project – April 2012

Vary density of ground state

The strontium Rydberg project – April 2012

No blockade so far

Denser sample needed → second stage cooling → dipole trap

The strontium Rydberg project – April 2012

Rydberg states have strong interactions

Coherently excited cold strontium to Rydberg states

Measured excited state spatial distributions

The strontium Rydberg project – April 2012

Matt Jones

Charles Adams

Me

Danielle

Boddy

Daniel

Sadler

Christophe

Vaillant

The strontium Rydberg project – April 2012

The strontium Rydberg project – April 2012

5sns(d)

λ2 = 413 nm

5s5p

λ1 = 461 nm

5s2

R. P. Abel et al, Appl. Phys. Lett. 94, 071107 (2009)

The strontium Rydberg project – April 2012