slide1
Download
Skip this Video
Download Presentation
Excited state spatial distributions in a cold strontium gas

Loading in 2 Seconds...

play fullscreen
1 / 22

Excited state spatial distributions in a cold strontium gas - PowerPoint PPT Presentation


  • 90 Views
  • Uploaded on

Excited state spatial distributions in a cold strontium gas. Graham Lochead. Outline. Motivation and Rydberg physics Experimental details Rydberg spatial distributions. The strontium Rydberg project – April 2012. Strong interactions. E int > E pot ,E kin.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Excited state spatial distributions in a cold strontium gas' - kaden-craft


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

Excited state spatial

distributions in a

cold strontium gas

Graham Lochead

outline
Outline

Motivation and Rydberg physics

Experimental details

Rydberg spatial distributions

The strontium Rydberg project – April 2012

strong interactions
Strong interactions

Eint > Epot,Ekin

Problem: Correlations make modelling difficult

Solution: Simulate in controlled environment

The strontium Rydberg project – April 2012

quantum simulator
Quantum simulator

Need single site addressability

Need strong interactions

…Rydberg atoms

Weitenberg et al, Nature 471, 319–324 (2011)

The strontium Rydberg project – April 2012

rydberg properties
Rydberg properties

High principal quantum number n

Ionization limit

n = 68

n = 67

n = 8

n = 66

n = 7

Properties

H~ 0.1 nm

n = 6

n = 5

n = 100~ 1 μm

The strontium Rydberg project – April 2012

rydberg physics
Rydberg physics

Strong, controllable interactions

The strontium Rydberg project – April 2012

dipole blockade
Dipole blockade

Interaction shift

Energy

Separation

One excitation per atom pair when

The strontium Rydberg project – April 2012

experimental blockade
Experimental blockade

Saturation of

excitation

H. Schempp et al, Phys. Rev. Lett. 104, 173602 (2010)

CNOT gate

operation

L. Isenhower et al, Phys. Rev. Lett. 104, 010503 (2010)

The strontium Rydberg project – April 2012

experimental plan
Experimental plan

The strontium Rydberg project – April 2012

project aim
Project aim

Investigate excited state spatial distributions

Ground state

Excited state

Column

density

Position

T. Pohl et al, Phys. Rev. Lett. 104, 043002 (2010)

The strontium Rydberg project – April 2012

cold atom setup
Cold atom setup

Zeeman slowed atomic beam

5 x 106 strontium atoms at ~5 mK

2 x 109 atoms/cm3

Rydberg laser locked using EIT

R. P. Abel et al, Appl. Phys. Lett. 94, 071107 (2009)

The strontium Rydberg project – April 2012

coherent population trapping
Coherent population trapping

5sns(d)

Ions detected on MCP

Ions Rydberg atoms

Sub natural linewidth

Control mJ

λ2 = 413 nm

5s5p

λ1 = 461 nm

5s2

The strontium Rydberg project – April 2012

autoionization
Autoionization

5s Sr+

e-

5pns(d)

λ3 = 408 nm

5s Sr+

5sns(d)

λ2 = 413 nm

5s5p

Resonant ionization

Independent of excitation

State selective

λ1 = 461 nm

5s2

J. Millen et al, Phys. Rev. Lett. 105, 213004 (2010)

The strontium Rydberg project – April 2012

focusing and translating
Focusing and translating

The strontium Rydberg project – April 2012

spatial distribution
Spatial distribution

Focus coupling beam as well

Scan one direction along ensemble

Ground state from camera image

The strontium Rydberg project – April 2012

2d spatial distribution
2D spatial distribution

Multiple slices → 2D spatial map

Ground state

Excited state

The strontium Rydberg project – April 2012

looking for blockade
Looking for blockade

Vary density of ground state

The strontium Rydberg project – April 2012

looking for blockade1
Looking for blockade

No blockade so far

Denser sample needed → second stage cooling → dipole trap

The strontium Rydberg project – April 2012

summary
Summary

Rydberg states have strong interactions

Coherently excited cold strontium to Rydberg states

Measured excited state spatial distributions

The strontium Rydberg project – April 2012

the team
The team

Matt Jones

Charles Adams

Me

Danielle

Boddy

Daniel

Sadler

Christophe

Vaillant

The strontium Rydberg project – April 2012

laser stabilization
Laser stabilization

5sns(d)

λ2 = 413 nm

5s5p

λ1 = 461 nm

5s2

R. P. Abel et al, Appl. Phys. Lett. 94, 071107 (2009)

The strontium Rydberg project – April 2012

ad