Nh m 13 hu nh ng c n mssv 070003t ng th m h nh mssv 070096t l th m h ng mssv 070078t
This presentation is the property of its rightful owner.
Sponsored Links
1 / 49

Chương 26 PowerPoint PPT Presentation


  • 113 Views
  • Uploaded on
  • Presentation posted in: General

Phần mềm dự toán chi phí. Nhóm 13: Huỳnh Ngọc Ân MSSV : 070003T Ngô Thị Mỹ Hạnh MSSV : 070096T Lê Thị Mỹ Hằng MSSV : 070078T. ( Software cost estimation ). Chương 26. Mục Tiêu (Objectives ).

Download Presentation

Chương 26

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Nh m 13 hu nh ng c n mssv 070003t ng th m h nh mssv 070096t l th m h ng mssv 070078t

Phn mm d ton chi ph

Nhm 13:Hunh Ngc nMSSV : 070003TNg Th M HnhMSSV : 070096TL Th M HngMSSV : 070078T

( Software cost estimation )

Chng 26


M c ti u objectives

Mc Tiu (Objectives )

  • Mc tiu ca chng ny l gii thiu cc k thut lp d ton chi ph v n lc cn thit cho sn xut phn mm:

  • Hiu c nguyn tc c bn ca phn mm chi ph v l doti sao gi ca phn mm c th khng c trc tip lin quan n chi ph pht trin ca n.

  • M t cc s liu nh gi nng sut phn mm

  • Gii thch ti sao cc k thut khc nhau nn c s dng c lng phn mm

  • Hiu cc nguyn tc ca m hnh COCOMO II ,thut ton d ton chi ph.


N i dung contents

Ni Dung (Contents)

  • 26.1 Nng sut (Productivity)

  • 26.2 Cc k thut c lng ( Estimation techniques)

  • 26.3 M hnh chi ph thut ton ( Algorithmic cost modelling )

  • 26.4 Nhn lc v thi gian d n (Project duration and staffing)


N i dung contents1

Ni Dung (Contents)

  • D ton lin quan n vic tr li cc cu hi sau y:

    1. Lm th no nhiu n lc l cn thit hon thnh tng hot ng?

    2. Thi gian l cn thit hon thnh mt hot ng?

    3. Tng chi ph ca tng hot ng?

  • D n d ton v lp k hoch d n thng c tin hnh xen k vi nhau.

  • Tuy nhin, bn c th phi lm mt s d ton chi ph trc khi k hoch chi tit c v ln.

  • Nhng c tnh ban u c th c s dng thit lp mt ngn sch cho d n hoc thit lp mt mc gi ca phn mm cho khch hng.


C c th nh ph n chi ph c a ph n m m

Cc Thnh Phn Chi Ph Ca Phn Mm

  • C ba thng s lin quan n vic tnh ton tng chi ph ca mt d n pht trin phn mm: Chi ph phn cng v phn mm

    Du lch v chi ph o to

    Chi ph n lc (Mc lng ca cc k s tham gia d n)

  • Chi ph chim u th l chi ph cng sc.

  • Chi ph du lch phong ph, c th cn thit khi d n c pht trin ti cc a im khc nhau, cc chi ph i li thng l mt phn nh trong chi ph cng sc.

  • My tnh mnh pht trin phn mm l tng i r.


C c th nh ph n chi ph c a ph n m m1

Cc Thnh Phn Chi Ph Ca Phn Mm

  • Cc chi ph sau y l mt phn ca tng chi ph n lc:1. Chi ph ca vic cung cp h thng si m v chiu sng khng gian vn phng2. Chi ph ca cc nhn vin h tr nh k ton, qun tr, qun l h thng v k thut3. Chi ph kt ni mng v truyn thng

    4. Chi ph ca c s trung ng nh l mt th vin hoc c s gii tr5. Chi ph an sinh x hi li ch nh lng hu, bo him y t.


Chi ph v gi c

Chi Ph V Gi C

  • Mt khi d n c trin khai, qun l d n phi thng xuyn cp nht chi ph v d ton k hoch. iu ny gip qu trnh lp k hoch v s dng hiu qu cc ngun lc.

  • Nu chi ph thc t ln hn nhiu so vi d ton, ngi qun l d n phi p dng cc ngun lc b sung cho d n, sa cha cc cng vic phi lm.

  • Phn mm nh gi phi c tin hnh khch quan vi mc ch d on chnh xc cc chi ph pht trin phn mm. Tuy nhin, mi quan h gia chi ph d n v gi tnh ph cho khch hng thng khng n gin.

  • Cc t chc kinh t, chnh tr v kinh doanh c xem xt nh hng ti gi tnh ph.


26 1 n ng su t productivity

26.1 Nng sut (Productivity)

  • Nng sut l s n v u ra trn s gi lm vic

  • Hnh 26.1 yu t nh hng phn mm gi c


Ch ng 26

  • Nng sut c tnh thng c o lng da trn cc thuc tnh ca phn mm chia cho tng s n lc cn thit pht trin. Cc loi s liu c s dng:

    1. S o kch thc ( v d: s dng lnh)

    2. S o chc nng ( v d: s chc nng c to ra trn mt khong thi gian)


26 1 n ng su t ph n m m

26.1 Nng sut Phn mm.

  • Tnh tng s im chc nng trong mt chng trnh bng cch o hay nh gi cc tnh nng chng trnh sau y:

  • Hnh 26.2 Thi gian pht trin h thng


26 1 n ng su t ph n m m1

26.1 Nng sut Phn mm.

  • Bn c th tnh ton s im chc nng (UFC) bng cch nhn mi c tnh ban u ca trng lng vi tng hp tt c cc gi tr.

  • S lng im i tng trong mt chng trnh l mt c tnh trng lng ca:1. S lng mn hnh ring bit l mn hnh hin th n gin c tnh l 1 i tng im, mn hnh phc tp va phi tnh l 2, v mn hnh rt phc tp tnh l 3 im i tng.


26 1 n ng su t ph n m m2

26.1 Nng sut Phn mm.

2. S lng cc bo co c sn xut i vi bo co n gin l 2 im i tng, i vi bo co va phc tp l 5, v cho cc bo co rng c th s l kh khn sn xut l 8 im i tng.

3. S lng module bng cc ngn ng lp trnh bt buc nh Java, C++ m phi c pht trin b sung m lp trnh c s d liu,mi mt module c tnh l 10 im i tng.

  • u im ca im i tng trn im chc nng l c d dng hn c tnh t mt c im k thut phn mm cp cao, im i tng ch quan tm n mn hnh, bo co v cc module bng cc ngn ng lp trnh thng thng. Khng quan tm n chi tit thc hin, v cc yu t phc tp tnh ton n gin hn nhiu.


26 1 n ng su t ph n m m3

26.1 Nng sut Phn mm.

  • c tnh kch thc m cho mt ng dng c tnh nhsau:

  • AVC: s dng m trung bnh

  • Gi tr ca AVC khc nhau 200-300 LOC / FP trong ngn ng lp rp, 2-40 LOC / FP cho mt ngn ng lp trnh c s d liu nh SQL.

  • Nng sut lp trnh ca cc c nhn lm vic trong mt t chc b nh hng bi mt s yu t. Quan trng nht trong s ny c tm tt trong hnh 26.3.

Code size = AVC x Number of function points

(M kch thc = AVC x S im chc nng)


Ch ng 26

  • Hnh 26.3 yu t nh hng n nng sut cng ngh phn mm


26 2 c c k thu t c l ng estimation techniques

26.2 Cc k thut c lng(Estimation techniques)

  • Khng c cch no n gin thc hin mt c tnh chnh xc cc n lc cn thit pht trin mt h thng phn mm

    • c tnh ban u c da trn cc thng tin khng y trong yu cu ngi s dng.

    • Cc phn mm c th chy trn cc my tnh khng quen thuc hoc s dng cng ngh mi.

    • Nhng ngi tham gia trong d n ny c th cha bit.

  • Tt c nhng k thut da vo nhng nh gi trn kinh nghim ca ngi qun l d n, s dng kin thc ca h v cc d n trc y i n c tnh ca cc ngun lc cn thit cho d n.


26 2 c c k thu t c l ng estimation techniques1

26.2 Cc k thut c lng(Estimation techniques)

  • Tuy nhin, c th c s khc bit quan trng gia cc d n trong qu kh v tng lai. Nhiu phng php pht trin mi v k thut c gii thiu trong 10 nm qua. Mt s v d v nhng thay i c th nh hng c tnh da trn kinh nghim bao gm:

    1. i tng c phn phi h thng hn

    2. S dng dch v web3. S dng h thng ERP hay c s d liu trung tm4. S dng phn mm off-the-shelf

    5.Pht trin v ti s dng


H nh 26 4 d to n chi ph k thu t

Hnh 26,4 D ton chi ph k thut


26 2 c c k thu t c l ng estimation techniques2

26.2 Cc k thut c lng(Estimation techniques)

  • Bn c th gii quyt cc cch tip cn vi c tnh chi ph th hin trong hnh 26,4 bng cch s dng mt cch tip cn t trn xung hay t di ln.

  • Top-down

    • Bt u cp h thng

    • nh gi tng th chc nng h thng v cch ny c phn phi thng qua h thng ph.

    • C th s dng m khng c kin thc v kin trc h thng v cc thnh phn c th l mt phn ca h thng.

    • a vo chi ph ti khon nh qun l cu hnh tch hp v ti liu.

    • C th nh gi thp chi ph gii quyt kh khn vn k thut mc thp.


26 2 c c k thu t c l ng estimation techniques3

26.2 Cc k thut c lng(Estimation techniques)

  • Bottom-up

    • Bt u cp thnh phn v d ton cc n lc cn thit cho mi thnh phn.

    • Thm nhng n lc t c mt c tnh cui cng.

    • C th s dng khi cc kin trc ca h thng c bit n v cc thnh phn c xc nh.

    • C th l mt phng php chnh xc, nu h thng c thit k chi tit.

    • C th nh gi thp cc chi ph ca hot ng cp h thng nh tch hp v ti liu.


26 3 m h nh chi ph thu t to n algorithmic cost modelling

26.3 M hnh chi ph thut ton (Algorithmic cost modelling )

  • Thut ton xy dng m hnh chi ph s dng mt cng thc ton hc d on chi ph d n da trn cc c tnh ca cc mt d n, s lng k s phn mm,..

  • Mt thut ton d ton chi ph cho phn mm c th c th hin nh:

    Effort =A x SizeB x M

    (N lc)

    A:l mt yu t hng s ph thuc vo thc tin a phng t chc v phn mm c pht trin.( phc tp)

    Size: Kch tht m phn mm(s o nng sut)


26 3 m h nh chi ph thu t to n algorithmic cost modelling1

26.3 M hnh chi ph thut ton (Algorithmic cost modelling )

B: Gi tr B thng gia t 1 n 1,5 phn nh cc n lc khng cn xng cho yu cu cc d n ln.

M: ph thuc vo qu trnh v nng sut

  • Hu ht cc m hnh u tng t nhng s dng cc gi tr A, B, M khc nhau

  • Ch :

    • Rt kh d on Size trong giai on u.

    • B v M l khch quan v c th thay i t ngi ny sang ngi khc.


26 3 1 m h nh cocomo

26.3.1 M hnh COCOMO

  • M hnh COCOMO l mt m hnh thc nghim c thc hin bng cch thu thp d liu t mt s lng ln cc d n phn mm.

  • Nhng d liu ny c phn tch tm ra cng thc ph hp nht.

  • Lin kt cc cng thc kch thc ca h thng, sn phm d n, v cc yu t n lc pht trin h thng.

  • Phin bn u tin ca m hnh COCOMO (COCOMO 81) l mt m hnh ba cp. Cp u tin (c bn) cung cp mt c tnh ban u kh khn.Mc th hai sa i ln ny bng cch s dng mt s d n v qu trnh h s v mc chi tit nht c sn xut c tnh cho giai on khc nhau ca d n.


Ch ng 26

  • Phn mm hin nay thng c pht trin bi


26 3 1 m h nh cocomo1

26.3.1 M hnh COCOMO

  • Cc m hnh con l mt phn ca m hnh COCOMO II l:

    • Mt ng dng m hnhthnh phn : c to ra t cc thnh phn ti s dng (hin c).

    • Thit k m hnh lc u: s dng khi yu cu c cung cp nhng cha bt u thit k.

    • Ti s dng m hnh : c s dng tnh ton n lc cn thit tch hp cc thnh phn ti s dng.

    • Mt m hnh kin trc, mt khi cc kin trc h thng c thit k, d ton chnh xc hn v kch thc phn mm c th c thc hin

  • Hnh 26,7 Cc m hnh COCOMO II


Ch ng 26

Da trn

S im

ng dng

ng

dng m hnh

thnh phn

Th nghim cc h thng pht trin s dng kch bn, DB lp trnh, vv

c dng

Cho.

Da trn

c lng n lc ban u. da vo nhng yu cuh thng v nhng ty chn thit k.

c dng

Cho.

S im chc nng

Thit k m hnhu

Da trn

S lng cc dng M ti s dng hoc to ra

Ti s dng

m hnh

c dng

Cho.

N lc s dng li cc thnh phn hoc t ng to ra m

Da trn

N lc pht trin da trn thit k h thngc im k thut

c dng

Cho.

S lng cc dng m ngun

M hnh kin trc


26 3 1 m h nh cocomo2

26.3.1 M hnh COCOMO

  • ng dng m hnh thnh phn

  • ng dng m hnh thnh phn c a vo COCOMO II h tr lp d ton n lc cn thit to mu d n v cho cc d n phn mm c pht trin bi cc thnh phn ti s dng rng ri.

  • N c da trn c tnh trng im ng dng (im i tng) chia cho mt c tnh tiu chun ca ng dng nng sut im.

  • Da trn cc c tnh tiu chun ca cc nh pht trin nng sut trong cc ng dng(i tng) im / thng.C s dung cng c Case.

  • Hnh 26,8 Cho thy mc nng sut ca i tng im c xut bi cc nh pht trin m hnh (Boehm, et al, 1995.).


26 3 1 m h nh cocomo3

26.3.1 M hnh COCOMO

  • Cng thc tnh n lc:

    PM= (NAP x (1- % reuse/100))/PROD

    PM: n lc ngi/thng

    NAP: s im ng dng.

    PROD: nng sut % c tnh s lng m c ti s dng

  • Hnh 26,8 i tng im nng sut


26 3 1 m h nh cocomo4

26.3.1 M hnh COCOMO

  • Thit k m hnhu

  • c tnh c th thc hin khi cc yu cu c ng .

  • c tnh sn xut trong giai on ny c da trn cng thc tiu chun cho cc m hnh thut ton, c th l:

    B= A x SizeB x M

    A=2,14 trong hiu chnh ban u trong KSLOG

    M = PERS x RCPX x RUSE x PDIF x PREX x FCIL x SCED

    B: dao ng t 1,1 n 1,24 ph thuc vo tinh hnh d n, tnh linh hot trong pht trin v phng php tnh ri ro.


26 3 1 m h nh cocomo5

26.3.1 M hnh COCOMO

  • Kch thc ca h thng c th hin trong KSLOC, l hng ngn s dng m ngun. Tnh KSLOC bng cch c tnh s lng cc im chc nng trong phn mm.

  • H s phn nh nng lc ca nh pht trin, cc chc nng yu cu..

  • C th tng hoc gim cc n lc cn thit. Nhng c im ny c s dng trong thit k m hnh ban u.

    • RCPX l sn phm ng tin cy v phc tp.

    • RUSE Ti s dng yu cu.

    • PDIF: nn tng kh khn.

    • PERS: nng lc nhn vin.

    • PREX kinh nghim nhn vin.

    • SCED yu cu tin

    • FCIL: phng tin h tr.


26 3 1 m h nh cocomo6

26.3.1 M hnh COCOMO

  • Ti s dng m hnh

  • COCOMO II xem xt s dng li m c hai loi:

    • Black-box: a m vo hp en ti s dng m khng thay i, m c iu chnh tch hp vi m mi.

    • White-box: s dng li m c sa i, mt c tnh kch thc tng ng vi s dng m ngun mi c tnh.

  • Mt s n lc pht trin l cn thit ti s dng ny bi v n phi c hiu v sa i trc khi n c th hot ng c trong h thng.

  • i vi cc m c t ng to ra, cng thc tnh ton n lc l:

    PMAuto = (ASLOC x AT/100) / ATPROD

  • ASLOC: s lng cc dng m c to ra.

  • AT: t l % ca m t ng to ra.

  • ATPROD: nng sut cc k s tch hp cc m ny.


26 3 1 m h nh cocomo7

26.3.1 M hnh COCOMO

  • V d :ATPROD c khong 2.400 bo co source / thng. Do , nu c mt tng s l 20.000 dng ca hp mu trng s dng li m s trong mt h thngv 30% s ny c t ng to ra, sau cc n lc cn thit tch hp m ny c to ra l:(20.000 x 30 / 100) / 2400 = 2,5 thng / ngi

  • Cc cng thc sau y c s dng tnh ton s lng tng ng cc dng ca m ngun:

    ESLOC = ASLOC x (1 - AT/100) x AAM

  • ESLOC: s lng tng ng cc dng m ngun mi.

  • ASLOC v AT: nh trn

  • AAM: l s iu chnh ph hp vi h s tnh ton t cc chi ph ca vic thay i m s dng li, chi ph ca vic tch hp cc m v chi ph ca quyt nh ti s dng.


26 3 2 m c ki n tr c sau c ng

26.3.2 Mc kin trc sau cng

  • S dng cng mt cng thc nh thit k m hnh ban u.

  • c tnh sn xut cp kin trc ny da trn cng mt cng thc c bn:

    PM=A x SIZEB x M.

  • Kch thc m c c tnh l:

    • S lng cc dng m mi s c pht trin.

    • c tnh s lng tng ng cc dng m mi tnh ton bng cch s dng cc m hnh ti s dng.

    • c tnh v s lng cc dng m phi c sa i theo yu cu thay i.


H nh 26 9 mi u t c c y u t c s d ng trong vi c t nh to n s m cocomo ii

Hnh 26.9 Miu t cc yu t c s dng trong vic tnh ton s m COCOMO II

  • nh gi cc gi tr c s dng trong tnh ton s m l:

    • Tin t l mt d n mi cho cc t chc xp hng thp(4).

    • Pht trin tnh linh hot khng c s tham gia ca khch hng c nh gi rt cao (1).

    • Kin trc / nguy c gii quyt - Khng c phn tch ri ro -. V. thp (5).

    • Nhm nghin cu gn kt - i mi - danh ngha (3)

    • Qu trnh trng thnh - mt s kim sot - danh ngha (3)


H nh 26 9 mi u t c c y u t c s d ng trong vi c t nh to n s m cocomo ii1

Hnh 26.9 Miu t cc yu t c s dng trong vic tnh ton s m COCOMO II


H nh 26 9 mi u t c c y u t c s d ng trong vi c t nh to n s m cocomo ii2

Hnh 26.9 Miu t cc yu t c s dng trong vic tnh ton s m COCOMO II


H nh 26 10 c hi ph d n i u khi n

Hnh26.10 Chi ph d n iu khin

  • Cc thuc tnh (hnh 26.10) c s dng iu chnh d ton ban u. M hnh kin trc sau thnh bn nhm:

    • 1.Sn phm phn mm c pht trin c thuc tnh lin quan n cc thuc tnh cn thit.

    • 2.Cc phn mm b hn ch bi cc phn cng ca my tnh.

    • 3.Cc thuc tnh l kinh nghim, kh nng ca nhng ngi lm vic da trn cc d n.

    • 4. Thuc tnh d n c lin quan vi cc c im c th ca d n pht trin phn mm.


H nh 26 10 c hi ph d n i u khi n1

Hnh26.10 Chi ph d n iu khin


H nh 26 10 chi ph d n i u khi n

Hnh26.10 chi ph d n iu khin


H nh 26 10 c hi ph d n i u khi n2

Hnh26.10 Chi ph d n iu khin


H nh 26 11 nh h ng c a i u khi n chi ph d to n

Hnh 26.11 nh hng ca iu khin chi ph d ton


H nh 26 11 nh h ng c a i u khi n chi ph d to n1

Hnh 26.11 nh hng ca iu khin chi ph d ton

  • Cc m hnh thut ton chi ph cung cp mt c s chod n quy hoch v chng cho php thay thchin lc c so snh.

  • H thng nhng tu v tr :

    • Phi l ng tin cy.

    • Phi gim thiu trng lng (s lng chip).

    • H s v ch tin cy v my tnh>1.

  • Chi ph cc thnh phn:

    • Mc tiu phn cng.

    • Pht trin nn tng.

    • N lc pht trin.


26 3 2 t hu t to n chi ph trong d n quy ho ch

26.3.2 Thut ton chi ph trong d n quy hoch

  • Cc chi ph phn mm (SC) c tnh nh sau:

    Sc=Effort estimate x RELY x TIME x STOR x TOOL x EXP x $15000.

  • Ch thch:

    • Rely: tin cy.

    • Stor: khng gian lu tr.

    • Time:thi gian cn thit.

    • Tool:cng c.

    • Exp:kinh nghim.


H nh 26 12 qu n l c c t y ch n

Hnh 26.12 Qun l cc ty chn


H nh 26 12 qu n l c c t y ch n1

Hnh 26.12 Qun l cc ty chn

A. S dng cc phn cng,pht trin h thng vpht trin i ng

B.X l vnng cp b nh

Chi ph phn cng tngKinh nghim gim

C Ch nng cp b nh

Chi ph phn cngtng

D.Cc nhn vin c kinh

Nghim.

E.H thng mi pht trin

Chi ph phn cng tngKinh nghim gim

F.Nhn vin c kinh nghim

Phn cng


H nh 26 13 qu n l chi ph t y ch n

Hnh 26.13 Qun l chi ph ty chn

  • La chn D xut hin cung cp chi ph thp nht cho tt c cc c tnh c bn.

  • La chn C (nng cp b nh) c tit kim chi ph thp hn, nhng nguy c rt thp.

  • Nhn chung, m hnh ny cho thy tm quan trng ca i ng nhn vin kinh nghim pht trin phn mm.


26 4 nh n l c v th i gian d n

26.4 Nhn lc v thi gian d n

  • Cng nh n lc lp d ton, qun l phi c tnh thi gian lch yu cu hon thnh mt d n.

  • Lch thi gian c th c c tnh bng cch cng thcCOCOMO 2 : TDEV = 3 x (PM)(0.33+0.2*(B-1.01))

  • Trong : PM l tnh ton n lc. B l s m.

  • Tnh ton ny d bo lch trnh danh ngha ca d n.

  • Nhn vin khng cn thit c th c tnh bng cch ln thi gian pht trin bi cc yu cu tin .

  • S lng ngi lm vic trong mt d n thay i ty theo giai on ca d n.

  • Thi gian cn thit l c lp vi s lng ngi lm vic trn d n.


I m ch nh

im chnh

  • Hin khng phi l mt mi quan h n gin gia gi tnh ph cho mt h thng v chi ph ca n pht trin.

  • Cc yu t nh hng n nng sut bao gm nng khiu c nhn, kinh nghim min, cc d n pht trin, quy m d n, h tr cng c v mi trng lm vic.

  • Phn mm c th c gi t c mt hp ng v cc chc nng iu chnh gi.

  • Cc k thut khc nhau ca d ton chi ph nn c s dng khi lp d ton chi ph.

  • M hnh COCOMO c d n, sn phm, nhn vin v cc thuc tnh phn cng vo ti khon khi d on n lc cn thit.

  • Cc m hnh thut ton chi ph h tr phn tch nh lng ty chn v chng cho php cc chi ph ca cc ty chn khc nhau so snh.

  • Thi gian hon thnh mt d n khng t l thun vi s ngi lm vic trn d n.


  • Login