1 / 34

Neutrino-Nucleus Reaction Cross Sections for Neutrino Detection and Nucleosynthesis in Supernova Explosions

This research discusses new shell-model Hamiltonians for describing spin modes in nuclei and their implications on neutrino-nucleus reaction cross sections. It also explores the nucleosynthesis processes and neutrino oscillation effects in supernova explosions.

jsinclair
Download Presentation

Neutrino-Nucleus Reaction Cross Sections for Neutrino Detection and Nucleosynthesis in Supernova Explosions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Neutrino-Nucleus ReactionCross Sections for Neutrino Detection and Nucleosynthesis in Supernova ExplosionsToshio Suzuki Nihon University, Knoxville July. 31, 2016

  2. ・ New shell-model Hamiltonians which describes the spin modes in nuclei very well → New ν-nucleus reaction cross sections Eν ≤ 100 MeV 1. ν-12C, ν- 13C: SFO (p-shell) 2. ν-16O: SFO-tls (p +p-sd shell) 4. ν-56Fe, ν-56Ni: GXPF1J (pf-shell) 5. ν-40Ar: VMU (monopole-based universal interaction) +SDPF-M +GXPF1J ・Nucleosynthesis in supernova explosion low-energy ν-detection ν-oscillation effects

  3. Collaborators T. Kajino a,b,B. Balantekinc, S. Chibad, M. Honmae, T. Yoshidab aNational Astronomical Observatory of Japan bDepartment of Astronomy, University of Tokyo cUniv. of Wisconsin dTokyo Institute of Technology eUniversity of Aizu

  4. ・New shell-model Hamiltonians and successful description of Gamow-Teller (GT) strengths and M1 transitions & moments SFO(p-shell, p-sd shell): GT in 12C, 14C, M1 moments Suzuki, Fujimoto, Otsuka, PR C69, (2003) GXPF1J (fp-shell): GT in Fe and Ni isotopes, M1 strengths Honma, Otsuka, Mizusaki, Brown, PR C65 (2002); C69 (2004) Suzuki, Honma et al., PR C79, (2009) VMU (monopole-based universal interaction) Otsuka, Suzuki, Honma, Utsuno et al., PRL 104 (2010) 012501 *important roles of tensor force Monopole terms of VNN Otsuka, Suzuki, Fujimoto, Grawe, Akaishi, PRL 69 (2005)

  5. Monopole terms: New SM interactions vs. microscopic G matrix tensor force → characteristic orbit dependence: kink Proper shell evolutions toward drip-lines: Change of magic numbers N=8 12Be B(E2: 02+ -> 2+) 16 16 8 20 20 6 6.4-7.6 15.2 0.19 πp3/2 EXP SFO CK-MK

  6. ・ν-nucleus reactions pf-shell: GXPF1J (Honma et al.) p-shell: SFO cf. KB3 Caurier et al. GT DAR SFO PR C55, 2078 (1997) KARMEN Suzuki, Chiba, Yoshida,Kajino, Otsuka, PR C74, 034307, (2006). SFO: gAeff/gA=0.95 B(GT: 12C)_cal = experiment B(GT)=9.5 B(GT)exp=9.9±2.4 B(GT)KB3G=9.0 SD + … : RPA (SGII) (ν, ν’), (νe, e-) SD exc. SFO reproduces DAR cross sections SM(GXPF1J)+RPA(SGII) 259 x10 -42cm2 RHB+RQRPA(DD-ME2) 263 RPA(Landau-Migdal force) 240

  7. 12C HT: Hayes-Towner, PR C62, 015501 (2000) CRPA: Kolb-Langanke-Vogel, NP A652, 91 (1999)

  8. ・Nucleosynthesis processes of light elements Inner O/C He/C He/H H Enhancement of 11B and 7Li abun-dances in supernova explosions

  9. MSW νoscillations Increase in the rates 4He(ne,e-p)3He 12C(ne,e-p)11C in the He layer Inverted hierarchy Normal hierarchy ・T2K, MINOS (2011) ・DoubleCHOOZ, Daya Bay, RENO (2012) sin22q13 = 0.1 “Inverted Mass Hierarchy” is statistically more preferred ! 74% ー Inverted 24% ー Normal First Detection of 7Li/11B in SN-grains in Murchison Meteorite W. Fujiya, P. Hoppe, & U. Ott, ApJ 730, L7 (2011). 7Li/11B-Ratio Bayesian analysis: Mathews, Kajino, Aoki and Fujiya, Phys. Rev. D85,105023 (2012).

  10. ・ ν-induced reactions on 13C 13C: attractive target for very low energy ν measure γ-decay GT GT & IA transitions GT GT+IAS Fukugita et al., PR C41 (1990) p-shell: Cohen-Kurath gAeff/gA =0.69 Detector for solar ν

  11. Solar ν cross sections folded over 8B ν spectrum p-sd shell: SFO Suzuki, Balantekin, Kajino, PR C86, 015502 (2012)

  12. Vogel et al.

  13. Partial cross sections of gamma and particle emissions 13C* ->13C +γ 13C* -> 12C *+ n, 12C (2+) -> 12C +γ

  14. Coherent (elastic) scattering on 12C and 13C Neutral current Vector part: C0: Probe of neutron density distribution

  15. ・ν-induced reactions on 16O Spin-dipole strength in 16O ・Modification of SFO → SFO-tls Full inclusion of tensor force ・p-sd: tensor->p+r LS -> s+r+w exp. 17F

  16. T= temperature of supernova ν T s(SFO-tls)/s(CRPA): • 1.41 8 1.17 gAeff/gA=0.95 CRPA: Kolbe, Langanke & Vogel, PR D66 (2002)

  17. X=11B

  18. Production yields of 11B and 11C (10-7M☉) Case1: previous branches used in 16O (γ, n, p, α-emissions) and HW92 cross sections Case2: previous branches, and new cross sections Case3: multi-particle branches and new cross sections T. Yoshida 15M☉ 20M☉

  19. ・ ν- 56Ni reactions and synthesis of 55Mn New shell-model Hamiltonains in pf-shell GXPF1:Honma, Otsuka, Mizusaki, Brown, PR C65 (2002); C69 (2004) KB3:Caurier et al, Rev. Mod. Phys. 77, 427 (2005) ○KB3G A = 47-52 KB + monopole corrections ○ GXPF1 A = 47-66 ・ Spin properties of fp-shell nuclei are well described Sasano et al., PRL 107, 202501 (2011) B(GT) for 56Ni B(GT-) for 58Ni gAeff/gAfree=0.74 Fujita et al.

  20. ●56Ni (ν, ν’) 56Ni B(GT)=6.2 (GXPF1J) B(GT)=5.4 (KB3G) large p emission cross section Synthesis of Mn in Population III Star cf: HW02 gamma p n Suzuki, Honma et al., PR C79, 061603(R) (2009)

  21. ・ ν- 40Ar reactions Liquid argon = powerful target for SNνdetection VMU= Monopole-based universal interaction tensor force: bare≈renormalized ○ sd-pf shell: 40Ar (ν, e-) 40K SDPF-VMU-LS sd: SDPF-M (Utsuno et al.) fp: GXPF1 (Honma et al.) sd-pf: VMU + 2-body LS (sd)-2 (fp)2 : 2hw B(GT) & ν-40Ar cross sections Solar ν cross sections folded over 8B ν spectrum Important roles of tensor force Suzuki and Honma, PR C87, 014607 (2013) Otsuka, Suzuki, Honma, Utsuno, Tsunoda, Tsukiyama, Hjorth-Jensen PRL 104 (2010) 012501

  22. OOO Ormand et al. β-decay (p,n) Bhattacharya et al., PR C80 (2009)

  23. GT+IAS Ee > 5 MeV : ICARUS Solar ν cross sections folded over 8B ν spectrum (p,n) β-decay IAS: C0+L0 ≈[(q2-ω2)/q2]2×C ; + C0 only GT: E15 +M1+C15+L15 ; + E15 only +Ormand et al, PL B345, 343 (1995) (p,n) Bhattacharya et al., PR C80, 055501 (2009)

  24. E. Kolbe, K. Langanke, G. Mart´ınez-Pinedo, and P. Vogel, J. Phys. G 29, 2569 (2003); I. Gil-Botella and A. Rubbia, JCAP 10, 9 (2003).

  25. Spectrum with ν-oscillations ・With collective oscillation effects Normal Inverted ・ With collective and MSW effects

  26. Cross sections folded over the spectra ・Target = 13C A (normal) B (inverted) no oscillation8.01 8.01 (10-42cm2) collective osc. 8.01 39.44 collective +MSW 39.31 39.35 ・Target = 48Ca Q(48Ca-48Sc)=2.8 MeV E(1+; 48Sc) = 2.5 MeV A (normal) B (inverted) no oscillation 73.56 73.56 (10-42cm2) collective osc. 73.56 303.4 collective +MSW 302.6 302.8 Esplit is too small to distinguish the ν-mass hierarchy in case of Collect.+MSW oscillations

  27. ・New ν –induced cross sections based on new shell-model Hamiltonians with proper tensor forces (SFO for p-shell, GXPF1 for pf-shell, VMU) ・Good reproduction of experimental data for 12C (ν, e-) 12N, 12C (ν, ν’) 12C and 56Fe (ν, e-) 56Co ・Effects of ν-oscillations in nucleosynthesis abundance ratio of 7Li/11B → ν mass hierarchy inverted hierarchy vs. normal hierarchy ・ New ν capture cross sections on 13C by SFO Enhanced solar ν cross sections compared to CK Detection of low-energy reactor anti-ν ・ New ν capture cross sections on 16O by SFO-tls Production of 11B by 16O(ν, ν’αp)11B Summary

  28. ・ GXPF1J well describes the GT strengths in Ni isotopes : 56Ni two-peak structure confirmed by recent exp. → 1.Accurate evaluation of e-capture rates at stellar environments 2. Large p-emission cross section for56Ni and production of more 55Mn in Pop. III stars ・VMU for sd-pf-shell: GT strength consistent with (p, n) reaction → new cross section for 40Ar (ν,e-) 40K induced by solar ν Suzuki and Honma, PR C87, 014607 (2013) ・ Identification of ν-spectrum with oscillations (collective + MSW) by low-energy ν scattering is not easy as Esplit is not large enough.

  29. p-sd shell: SFO Solar ν cross sections folded over 8B ν spectrum Suzuki, Balantekin, Kajino, PR C86, 015502 (2012)

  30. present Cf: CRPA: Kolbe, Langanke & Vogel, PR D66 (2002) SM (T=8 MeV) X total 6.19 (+0) γ 4.46 ( -3) p+pγ 3.96 (+0) n+nγ 1.17 (+0) nn 6.56 ( -5) np 2.47 ( -1) pp 1.81 ( -1) nnp 5.10 ( -2) pnp 1.55 ( -1) α 1.02 ( -1) pα 3.08 ( -1) nα 7.69 ( -3)

  31. Murchison MeteoriteSiC X-grains - 12C/13C > Solar - 14N/15N < Solar - Enhanced 28Si - Decay of 26Al (t1/2=7x105yr), 44Ti (t1/2=60yr) SiC X-grains are made of Supernova Dust ! W. Fujiya, P. Hoppe, and U. Ott (2011, ApJ 730, L7) discovered 11B and 7Li isotopes in 13 SiC X-grains.

  32. Neutral-current M1 T=2 → T=2 qIV=0.35 qIS=0.7 Exp. B(M1)=0.148(59) μN2 Li et al, PR C73, 054306 (2006)

More Related