1 / 21

Preliminary Results of a Beam Expander for Biomedical Imaging

Mercedes Martinson, George Belev , Nazanin Samadi , Bassey Bassey , Gurpreet Aulakh , Rob Lewis, Dean Chapman. Preliminary Results of a Beam Expander for Biomedical Imaging. Presented by: Mercedes Martinson . Outline. Background Motivation Implementation Results Applications

josiah
Download Presentation

Preliminary Results of a Beam Expander for Biomedical Imaging

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mercedes Martinson, George Belev, NazaninSamadi, BasseyBassey, GurpreetAulakh, Rob Lewis, Dean Chapman Preliminary Results of a Beam Expander for Biomedical Imaging Presented by: Mercedes Martinson

  2. Outline • Background • Motivation • Implementation • Results • Applications • Future work

  3. The Canadian Light Source (CLS) • Electron beam inside a storagering • Bent using dipole bend magnets • Acceleration of charged particles creates electromagnetic radiation • Dopper“headlight” effect shifts frequency higher • Pushes radiation into X-ray regime • Small vertical divergence • Horizontal “smearing”

  4. Synchrotron beam is wide and short • Vertical scanning • CT imaging: slow • Imaging: slices • Reconstruction: stitching • Increases dose • Dynamic imaging: • Basically impossible

  5. Double bent Laue crystal expander Expansion:

  6. Geometric Focus (monochromatic) Curvature of crystal and lattice planes causes a virtual focus.

  7. Single ray Focus (polychromatic) Reflection from multiple layers and angle between lattice planes causes a virtual focus of the beam

  8. Single ray + geometric focus matched The beam appears to come from a point (virtual focus) and the beam diverges on the downstream side.

  9. Four bar bender

  10. Rigid Frame Bender

  11. Rigid Frame Bender Advantages: • Bending radius is reproducible • Uniform bend • Anticlastic bending is reduced • Inexpensive • Heat sink Disadvantages: • Bending radius is fixed • Crystal distortion • Window height limits expansion • Machining irregularities

  12. How much bigger did we make it? • 7.7x(Summer 2013) • Beam quality was poor: • Phase • Uniformity • Vertical blurring • 12x (Winter 2014) • Improved beam quality: phase and edge preservation • Flux reduction: low intensity reflection

  13. What did we do with the bigger beam? • Measured beam quality • Preliminary imaging tests • High resolution micro-CT in a single spin • Full FOV on 8.75 μm Hamamatsu detector • Dynamic imaging • Live mouse, 30 fps (200 μm) • Measured flux • Comparable to beamline mono • Phase imaging

  14. Preliminary imaging tests Various phase, absorption, and edge test objects. This was before we figured out the trick to getting a uniform beam.

  15. High resolution micro-CT: pinecone 21.15mm

  16. High resolution micro-CT: seed pod

  17. High-speed (30 fps) dynamic imaging

  18. In-line phase image using expander at CLS 50 mm Approximate height using beamline mono CLS BMIT-BM: Energy = 33 keV, Propagation distance = 2.05 m

  19. Next: Installation to ID beamline

  20. Mercedes Martinson, NazaninSamadi, and BasseyBassey are Fellows , and Dean Chapman and Rob Lewis are Mentors, in the Canadian Institutes of Health Research Training grant in Health Research Using Synchrotron Techniques (CIHR-THRUST)

  21. References • Astolfo, A., Schültke, E., Menk, R. H., Kirch, R. D., Juurlink, B. H. J., Hall, C., Harsan, L.-A., Stebel, M., Barbetta, D., Tromba, G. & Arfelli, F. (2013). Nanomedicine : nanotechnology, biology, and medicine 9, 284-292. • Bravin, A., Coan, P. & Suortti, P. (2013). Physics in Medicine and Biology 58, R1. • Coan, P., Bravin, A. & Tromba, G. (2013). Journal of Physics D: Applied Physics 46, 494007. • Erola, E., Eteläniemi, V., Suortti, P., Pattison, P. & Thomlinson, W. (1990). Journal of Applied Crystallography 23, 35-42. • Hooper, S. B., Kitchen, M. J., Siew, M. L. L., Lewis, R. A., Fouras, A., B te Pas, A., Siu, K. K. W., Yagi, N., Uesugi, K. & Wallace, M. J. (2009). Clinical and Experimental Pharmacology and Physiology 36, 117-125. • Hubbell, J. H. a. S., S.M. (2004). Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients, http://physics.nist.gov/xaamdi. • Hyodo, K., Ando, M., Oku, Y., Yamamoto, S., Takeda, T., Itai, Y., Ohtsuka, S., Sugishita, Y. & Tada, J. (1998). Journal of Synchrotron Radiation 5, 1123-1126. • Lewis, R. A. (2004). Physics in Medicine and Biology 49, 3573-3583. • Lewis, R. A., Yagi, N., Kitchen, M. J., Morgan, M. J., Paganin, D., Siu, K. K. W., Pavlov, K., Williams, I., Uesugi, K., Wallace, M. J., Hall, C. J., Whitley, J. & Hooper, S. B. (2005). Physics in Medicine and Biology 50, 5031-5040. • Liu, Y., Nelson, J., Holzner, C., Andrews, J. C. & Pianetta, P. (2013). Journal of Physics D: Applied Physics 46, 494001. • Porra, L., Suhonen, H., Suortti, P., Sovijärvi, A. R. A. & Bayat, S. (2011). Critical Care Medicine 39, 1731-1738 1710.1097/CCM.1730b1013e318218a318375. • Schültke, E., Kelly, M. E., Nemoz, C., Fiedler, S., Ogieglo, L., Crawford, P., Paterson, J., Beavis, C., Esteve, F., Brochard, T., Renier, M., Requardt, H., Dallery, D., Le Duc, G. & Meguro, K. (2011). European journal of radiology 79, 323-327. • Suortti, P., Keyriläinen, J. & Thomlinson, W. (2013). Journal of Physics D: Applied Physics 46, 494002. • Suortti, P. & Schulze, C. (1995). Journal of Synchrotron Radiation 2, 6-12. • Suortti, P. & Thomlinson, W. (2003). Physics in Medicine and Biology 48, R1. • Thomlinson, W., Suortti, P. & Chapman, D. (2005). Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 543, 288-296.

More Related